Spelling suggestions: "subject:"1earning cachine"" "subject:"1earning amachine""
91 |
Microstructure Representation and Prediction via Convolutional Neural Network-Based Texture Representation and Synthesis, Towards Process Structure LinkageHan, Yi 19 May 2021 (has links)
Metal additive manufacturing (AM) provides a platform for microstructure optimization via process control, the ability to model the evolution of microstructures from changes in processing condition or even predict the microstructures from given processing condition would greatly reduce the time frame and the cost of the optimization process. In 1, we present a deep learning framework to quantitatively analyze the microstructural variations of metals fabricated by AM under different processing conditions. We also demonstrate the capability of predicting new microstructures from the representation with deep learning and we can explore the physical insights of the implicitly expressed microstructure representations. We validate our framework using samples fabricated by a solid-state AM technology, additive friction stir deposition, which typically results in equiaxed microstructures. In 2, we further improve and generalize the generating framework, a set of metrics is used to quantitatively analyze the effectiveness of the generation by comparing the microstructure characteristics between the generated samples and the originals. We also take advantage of image processing techniques to aid the calculation of metrics that require grain segmentation. / Master of Science / Different from the traditional manufacturing technique which removes material to form the desired shape, additive manufacturing (AM) adds material together to form the shapes usually layer by layer. AM which is sometimes also referred to as 3-D printing enables the optimization of material property through changing the processing conditions. The microstructure is structures formed by materials on a microscopic scale. Crystals like metal usually form a crystalline structure composed of grains where atoms have the same orientation. Especially for metal AM, changes in the processing condition will usually result in changes in microstructures and material properties. To better optimize for the desired material properties, in 1 we present a microstructure representation method that allows projection of microstructure onto the representation space and prediction from an arbitrary point from the representation space. This representation method allows us to better analyze the changes in microstructure in relation to the changes in processing conditions. In 2, we validate the representation and prediction using EBSD data collected from copper samples manufactured with AM under different processing conditions.
|
92 |
Representational Capabilities of Feed-forward and Sequential Neural ArchitecturesSanford, Clayton Hendrick January 2024 (has links)
Despite the widespread empirical success of deep neural networks over the past decade, a comprehensive understanding of their mathematical properties remains elusive, which limits the abilities of practitioners to train neural networks in a principled manner. This dissertation provides a representational characterization of a variety of neural network architectures, including fully-connected feed-forward networks and sequential models like transformers.
The representational capabilities of neural networks are most famously characterized by the universal approximation theorem, which states that sufficiently large neural networks can closely approximate any well-behaved target function. However, the universal approximation theorem applies exclusively to two-layer neural networks of unbounded size and fails to capture the comparative strengths and weaknesses of different architectures.
The thesis addresses these limitations by quantifying the representational consequences of random features, weight regularization, and model depth on feed-forward architectures. It further investigates and contrasts the expressive powers of transformers and other sequential neural architectures. Taken together, these results apply a wide range of theoretical tools—including approximation theory, discrete dynamical systems, and communication complexity—to prove rigorous separations between different neural architectures and scaling regimes.
|
93 |
Going Deeper with Images and Natural LanguageMa, Yufeng 29 March 2019 (has links)
One aim in the area of artificial intelligence (AI) is to develop a smart agent with high intelligence that is able to perceive and understand the complex visual environment around us. More ambitiously, it should be able to interact with us about its surroundings in natural languages. Thanks to the progress made in deep learning, we've seen huge breakthroughs towards this goal over the last few years. The developments have been extremely rapid in visual recognition, in which machines now can categorize images into multiple classes, and detect various objects within an image, with an ability that is competitive with or even surpasses that of humans. Meanwhile, we also have witnessed similar strides in natural language processing (NLP). It is quite often for us to see that now computers are able to almost perfectly do text classification, machine translation, etc. However, despite much inspiring progress, most of the achievements made are still within one domain, not handling inter-domain situations. The interaction between the visual and textual areas is still quite limited, although there has been progress in image captioning, visual question answering, etc.
In this dissertation, we design models and algorithms that enable us to build in-depth connections between images and natural languages, which help us to better understand their inner structures. In particular, first we study how to make machines generate image descriptions that are indistinguishable from ones expressed by humans, which as a result also achieved better quantitative evaluation performance. Second, we devise a novel algorithm for measuring review congruence, which takes an image and review text as input and quantifies the relevance of each sentence to the image. The whole model is trained without any supervised ground truth labels. Finally, we propose a brand new AI task called Image Aspect Mining, to detect visual aspects in images and identify aspect level rating within the review context.
On the theoretical side, this research contributes to multiple research areas in Computer Vision (CV), Natural Language Processing (NLP), interactions between CVandNLP, and Deep Learning. Regarding impact, these techniques will benefit related users such as the visually impaired, customers reading reviews, merchants, and AI researchers in general. / Doctor of Philosophy / One aim in the area of artificial intelligence (AI) is to develop a smart agent with high intelligence that is able to perceive and understand the complex visual environment around us. More ambitiously, it should be able to interact with us about its surroundings in natural languages. Thanks to the progress made in deep learning, we’ve seen huge breakthroughs towards this goal over the last few years. The developments have been extremely rapid in visual recognition, in which machines now can categorize images into multiple classes, and detect various objects within an image, with an ability that is competitive with or even surpasses that of humans. Meanwhile, we also have witnessed similar strides in natural language processing (NLP). It is quite often for us to see that now computers are able to almost perfectly do text classification, machine translation, etc. However, despite much inspiring progress, most of the achievements made are still within one domain, not handling inter-domain situations. The interaction between the visual and textual areas is still quite limited, although there has been progress in image captioning, visual question answering, etc.
In this dissertation, we design models and algorithms that enable us to build in-depth connections between images and natural languages, which help us to better understand their inner structures. In particular, first we study how to make machines generate image descriptions that are indistinguishable from ones expressed by humans, which as a result also achieved better quantitative evaluation performance. Second, we devise a novel algorithm for measuring review congruence, which takes an image and review text as input and quantifies the relevance of each sentence to the image. The whole model is trained without any supervised ground truth labels. Finally, we propose a brand new AI task called Image Aspect Mining, to detect visual aspects in images and identify aspect level rating within the review context.
On the theoretical side, this research contributes to multiple research areas in Computer Vision (CV), Natural Language Processing (NLP), interactions between CV&NLP, and Deep Learning. Regarding impact, these techniques will benefit related users such as the visually impaired, customers reading reviews, merchants, and AI researchers in general.
|
94 |
Generating Canonical Sentences from Question-Answer Pairs of Deposition TranscriptsMehrotra, Maanav 15 September 2020 (has links)
In the legal domain, documents of various types are created in connection with a particular case, such as testimony of people, transcripts, depositions, memos, and emails. Deposition transcripts are one such type of legal document, which consists of conversations between the different parties in the legal proceedings that are recorded by a court reporter. Court reporting has been traced back to 63 B.C. It has transformed from the initial scripts of ``Cuneiform", ``Running Script", and ``Grass Script" to Certified Access Real-time Translation (CART). Since the boom of digitization, there has been a shift to storing these in the PDF/A format. Deposition transcripts are in the form of question-answer (QA) pairs and can be quite lengthy for common people to read. This gives us a need to develop some automatic text-summarization method for the same. The present-day summarization systems do not support this form of text, entailing a need to process them. This creates a need to parse such documents and extract QA pairs as well as any relevant supporting information. These QA pairs can then be converted into complete canonical sentences, i.e., in a declarative form, from which we could extract some insights and use for further downstream tasks. This work investigates the same, as well as using deep-learning techniques for such transformations. / Master of Science / In the legal domain, documents of various types are created in connection with a particular case, such as the testimony of people, transcripts, memos, and emails. Deposition transcripts are one such type of legal document, which consists of conversations between a lawyer and one of the parties in the legal proceedings, captured by a court reporter. Since the boom of digitization, there has been a shift to storing these in the PDF/A format. Deposition transcripts are in the form of question-answer (QA) pairs and can be quite lengthy. Though automatic summarization could help, present-day systems do not work well with such texts. This creates a need to parse these documents and extract QA pairs as well as any relevant supporting information. The QA pairs can then be converted into canonical sentences, i.e., in a declarative form, from which we could extract some insights and support downstream tasks. This work describes these conversions, as well as using deep-learning techniques for such transformations.
|
95 |
Application of Machine Learning to Multi Antenna Transmission and Machine Type Resource AllocationEmenonye, Don-Roberts Ugochukwu 11 September 2020 (has links)
Wireless communication systems is a well-researched area in electrical engineering that has continually evolved over the past decades. This constant evolution and development have led to well-formulated theoretical baselines in terms of reliability and efficiency. However, most communication baselines are derived by splitting the baseband communications into a series of modular blocks like modulation, coding, channel estimation, and orthogonal frequency modulation. Subsequently, these blocks are independently optimized. Although this has led to a very efficient and reliable process, a theoretical verification of the optimality of this design process is not feasible due to the complexities of each individual block. In this work, we propose two modifications to these conventional wireless systems. First, with the goal of designing better space-time block codes for improved reliability, we propose to redesign the transmit and receive blocks of the physical layer. We replace a portion of the transmit chain - from modulation to antenna mapping with a neural network. Similarly, the receiver/decoder is also replaced with a neural network. In other words, the first part of this work focuses on jointly optimizing the transmit and receive blocks to produce a set of space-time codes that are resilient to Rayleigh fading channels. We compare our results to the conventional orthogonal space-time block codes for multiple antenna configurations.
The second part of this work investigates the possibility of designing a distributed multiagent reinforcement learning-based multi-access algorithm for machine type communication. This work recognizes that cellular networks are being proposed as a solution for the connectivity of machine type devices (MTDs) and one of the most crucial aspects of scheduling in cellular connectivity is the random access procedure. The random access process is used by conventional cellular users to receive an allocation for the uplink transmissions. This process usually requires six resource blocks. It is efficient for cellular users to perform this process because transmission of cellular data usually requires more than six resource blocks. Hence, it is relatively efficient to perform the random access process in order to establish a connection. Moreover, as long as cellular users maintain synchronization, they do not have to undertake the random access process every time they have data to transmit. They can maintain a connection with the base station through discontinuous reception. On the other hand, the random access process is unsuitable for MTDs because MTDs usually have small-sized packets. Hence, performing the random access process to transmit such small-sized packets is highly inefficient. Also, most MTDs are power constrained, thus they turn off when they have no data to transmit. This means that they lose their connection and can't maintain any form of discontinuous reception. Hence, they perform the random process each time they have data to transmit. Due to these observations, explicit scheduling is undesirable for MTC.
To overcome these challenges, we propose bypassing the entire scheduling process by using a grant free resource allocation scheme. In this scheme, MTDs pseudo-randomly transmit their data in random access slots. Note that this results in the possibility of a large number of collisions during the random access slots. To alleviate the resulting congestion, we exploit a heterogeneous network and investigate the optimal MTD-BS association which minimizes the long term congestion experienced in the overall cellular network. Our results show that we can derive the optimal MTD-BS association when the number of MTDs is less than the total number of random access slots. / Master of Science / Wireless communication systems is a well researched area of engineering that has continually evolved over the past decades. This constant evolution and development has led to well formulated theoretical baselines in terms of reliability and efficiency. This two part thesis investigates the possibility of improving these wireless systems with machine learning. First, with the goal of designing more resilient codes for transmission, we propose to redesign the transmit and receive blocks of the physical layer. We focus on jointly optimizing the transmit and receive blocks to produce a set of transmit codes that are resilient to channel impairments. We compare our results to the current conventional codes for various transmit and receive antenna configuration.
The second part of this work investigates the possibility of designing a distributed multi-access scheme for machine type devices. In this scheme, MTDs pseudo-randomly transmit their data by randomly selecting time slots. This results in the possibility of a large number of collisions occurring in the duration of these slots. To alleviate the resulting congestion, we employ a heterogeneous network and investigate the optimal MTD-BS association which minimizes the long term congestion experienced in the overall network. Our results show that we can derive the optimal MTD-BS algorithm when the number of MTDs is less than the total number of slots.
|
96 |
Deep Learning for Spatiotemporal NowcastingFranch, Gabriele 08 March 2021 (has links)
Nowcasting – short-term forecasting using current observations – is a key challenge that human activities have to face on a daily basis. We heavily rely on short-term meteorological predictions in domains such as aviation, agriculture, mobility, and energy production. One of the most important and challenging task for meteorology is the nowcasting of extreme events, whose anticipation is highly needed to mitigate risk in terms of social or economic costs and human safety. The goal of this thesis is to contribute with new machine learning methods to improve the spatio-temporal precision of nowcasting of extreme precipitation events. This work relies on recent advances in deep learning for nowcasting, adding methods targeted at improving nowcasting using ensembles and trained on novel original data resources. Indeed, the new curated multi-year radar scan dataset (TAASRAD19) is introduced that contains more than 350.000 labelled precipitation records over 10 years, to provide a baseline benchmark, and foster reproducibility of machine learning modeling. A TrajGRU model is applied to TAASRAD19, and implemented in an operational prototype. The thesis also introduces a novel method for fast analog search based on manifold learning: the tool leverages the entire dataset history in less than 5 seconds and demonstrates the feasibility of predictive ensembles. In the final part of the thesis, the new deep learning architecture ConvSG based on stacked generalization is presented, introducing novel concepts for deep learning in precipitation nowcasting: ConvSG is specifically designed to improve predictions of extreme precipitation regimes over published methods, and shows a 117% skill improvement on extreme rain regimes over a single member. Moreover, ConvSG shows superior or equal skills compared to Lagrangian Extrapolation models for all rain rates, achieving a 49% average improvement in predictive skill over extrapolation on the higher precipitation regimes.
|
97 |
Deep Learning for Biological ProblemsElmarakeby, Haitham Abdulrahman 14 June 2017 (has links)
The last decade has witnessed a tremendous increase in the amount of available biological data. Different technologies for measuring the genome, epigenome, transcriptome, proteome, metabolome, and microbiome in different organisms are producing large amounts of high-dimensional data every day. High-dimensional data provides unprecedented challenges and opportunities to gain a better understanding of biological systems. Unlike other data types, biological data imposes more constraints on researchers. Biologists are not only interested in accurate predictive models that capture complex input-output relationships, but they also seek a deep understanding of these models.
In the last few years, deep models have achieved better performance in computational prediction tasks compared to other approaches. Deep models have been extensively used in processing natural data, such as images, text, and recently sound. However, application of deep models in biology is limited. Here, I propose to use deep models for output prediction, dimension reduction, and feature selection of biological data to get better interpretation and understanding of biological systems. I demonstrate the applicability of deep models in a domain that has a high and direct impact on health care.
In this research, novel deep learning models have been introduced to solve pressing biological problems. The research shows that deep models can be used to automatically extract features from raw inputs without the need to manually craft features. Deep models are used to reduce the dimensionality of the input space, which resulted in faster training. Deep models are shown to have better performance and less variant output when compared to other shallow models even when an ensemble of shallow models is used. Deep models are shown to be able to process non-classical inputs such as sequences. Deep models are shown to be able to naturally process input sequences to automatically extract useful features. / Ph. D. / The world is generating more data than any time before. The abundance of data provides a great challenge and opportunity to get a better understanding of complex biological systems. The complexity of biological systems mandates better computational models that can make use the different types and formats of biological data. In the last few years, deep models have achieved better performance in computational prediction tasks compared to other approaches. Deep models have been extensively used in processing natural data, such as images, text, and recently sound. In this research, I show that deep learning can be applied to solve different biological problems that are directly related to human health. In this research, deep learning is used to predict which genes are essential for cancer cell survival. Deep learning is used to predict which drug combinations can work together to better treat cancer. Deep learning is used to predict whether two proteins are interacting with each other. This can be helpful for example in finding potential targets of viral proteins inside the human body.
|
98 |
Securing Cloud Containers through Intrusion Detection and RemediationAbed, Amr Sayed Omar 29 August 2017 (has links)
Linux containers are gaining increasing traction in both individual and industrial use. As these containers get integrated into mission-critical systems, real-time detection of malicious cyber attacks becomes a critical operational requirement. However, a little research has been conducted in this area.
This research introduces an anomaly-based intrusion detection and remediation system for container-based clouds. The introduced system monitors system calls between the container and the host server to passively detect malfeasance against applications running in cloud containers.
We started by applying a basic memory-based machine learning technique to model the container behavior.
The same technique was also extended to learn the behavior of a distributed application running in a number of cloud-based containers. In addition to monitoring the behavior of each container independently, the system used prior knowledge for a more informed detection system.
We then studied the feasibility and effectiveness of applying a more sophisticated deep learning technique to the same problem. We used a recurrent neural network to model the container behavior.
We evaluated the system using a typical web application hosted in two containers, one for the front-end web server, and one for the back-end database server. The system has shown promising results for both of the machine learning techniques used.
Finally, we describe a number of incident handling and remediation techniques to be applied upon attack detection. / Ph. D. / Cloud computing plays an important role in our daily lives today. Most of the online services and applications we use are hosted in a cloud environment. Examples include email, cloud storage, online booking systems, and many websites. Typically, a cloud environment would host many of those applications on a single host to maximize efficiency and minimize overhead. To achieve that, cloud service providers, such as Amazon Web Services and Google Cloud Platform, rely on virtual encapsulation environments, such as virtual machines and containers, to encapsulate and isolate applications from other applications running in the cloud.
One major concern usually raised when discussing cloud applications is the security of the application and the privacy of the data it handles, e.g. the files stored by the end users on their cloud storage. In addition to firewalls and traditional security measures that attempt to prevent an attack from affecting the application, intrusion detection systems (IDS) are usually used to detect when an application is affected by a successful attack that managed to escape the firewall. Many intrusion detection systems have been introduced to cloud applications using virtual machines, but almost none has been introduced to applications running in containers.
In this dissertation, we introduce an intrusion detection system to be deployed by cloud service providers to container-based cloud environments. The system uses machine learning techniques to learn the behavior of the application running in the container and detect when the behavior changes as an indication for a potential attack. Upon detection of the attack, the system applies one of three defense mechanisms to restore the running application to a safe state.
|
99 |
The Art of Deep Connection - Towards Natural and Pragmatic Conversational Agent InteractionsRay, Arijit 12 July 2017 (has links)
As research in Artificial Intelligence (AI) advances, it is crucial to focus on having seamless communication between humans and machines in order to effectively accomplish tasks. Smooth human-machine communication requires the machine to be sensible and human-like while interacting with humans, while simultaneously being capable of extracting the maximum information it needs to accomplish the desired task. Since a lot of the tasks required to be solved by machines today involve the understanding of images, training machines to have human-like and effective image-grounded conversations with humans is one important step towards achieving this goal. Although we now have agents that can answer questions asked for images, they are prone to failure from confusing input, and cannot ask clarification questions, in turn, to extract the desired information from humans. Hence, as a first step, we direct our efforts towards making Visual Question Answering agents human-like by making them resilient to confusing inputs that otherwise do not confuse humans. Not only is it crucial for a machine to answer questions reasonably, it should also know how to ask questions sequentially to extract the desired information it needs from a human. Hence, we introduce a novel game called the Visual 20 Questions Game, where a machine tries to figure out a secret image a human has picked by having a natural language conversation with the human. Using deep learning techniques like recurrent neural networks and sequence-to-sequence learning, we demonstrate scalable and reasonable performances on both the tasks. / Master of Science / Research in Artificial Intelligence has reached to a point where computers can answer natural freeform questions asked to arbitrary images in a somewhat reasonable manner. These machines are called Visual Question Answering agents. However, they are prone to failure from even a slightly confusing input. For example, for an obviously irrelevant question asked to an image, they would answer something non-sensical instead of recognizing that the question is irrelevant. Furthermore, they also cannot ask questions in turn to humans for clarification or for more information. These shortcomings not only harm their efficacy, but also harm their perceived trust from human users. In order to remedy these problems, we first direct our efforts towards making Visual Question Answering agents capable of identifying an irrelevant question for an image. Next, we also try to train machines to be able to ask questions to extract more information from humans to make an informed decision. We do this by introducing a novel game called the Visual 20 Questions game, where a machine tries to figure out a secret image a human has picked by having a natural language conversation with the human. Deep learning techniques such as sequence-to-sequence learning using recurrent neural networks make it possible for machines to learn how to converse based on a series of conversational exchanges made between two humans. Techniques like reinforcement learning make it possible for machines to better themselves based on rewards it gets for accomplishing a task in a certain way. Using such algorithms, we demonstrate promise towards scalable and reasonable performances on both the tasks.
|
100 |
Deep Learning Artifact Identification and Correction Methods for Accessible MRIManso Jimeno, Marina January 2024 (has links)
Despite its potential, 66% of the world's population lacks access to magnetic resonance imaging (MRI). The main factors contributing to the uneven distribution of this imaging modality worldwide are the elevated cost and intricate nature of MRI systems coupled with the high level of knowledge and expertise required for its operation and maintenance. To improve its worldwide accessibility, MRI technology and techniques must undergo modifications to deliver a more cost-effective system that is easier to site and use without compromising on the diagnostic quality of the images.
This thesis presents two deep learning methods, ArtifactID and GDCNet, developed for artifact detection and correction and tailored for their integration into accessible MRI systems. ArtifactID is targeted to resource-constrained settings where skilled personnel are scarce. It automates part of the quality assessment step, critical during image acquisition to ensure data quality and the success of downstream analysis or interpretation. This study utilized two types of T1-weighted neuroimaging datasets: publicly available and prospective. Combining the two, ArtifactID successfully identified wrap-around and rigid head motion in multi-field strength and multi-vendor data. We leveraged the public datasets for artifact simulation, model training, and testing. In contrast, prospective datasets were reserved for validation and testing and to assess the models’ performance in data representative of clinical and deployment settings. We trained individual convolutional neural networks for each artifact. The wrap-around models perform binary classification, while the multi-class motion classification model allows distinction between moderate and severe motion artifacts. Our models demonstrated strong agreement with ground truth labels and motion metrics and proved potential for generalization to various data distributions. Furthermore, Grad-CAM heatmaps allowed early identification of failure modes, artifact localization within the image, and fine-tuning the pre-processing steps.
GDCNet correction applies to imaging techniques highly susceptible to local B0 deviations and systems whose design entails high B0 inhomogeneity. The method estimates a geometric distortion map by non-linear registration to a reference image. The self-supervised model, consisting of a U-Net and a spatial transform function unit, learned the correction by optimizing the similarity between the distorted and the reference images. We initially developed the tool for distortion correction of echo-planar imaging functional MRI images at 3 T.
This method allows dynamic correction of the functional data as a distortion map is estimated for each temporal frame. For this model, we leveraged T1-weighted anatomical images as target images. We trained the model on publicly available datasets and tested it on in-distribution and out-of-distribution datasets consisting of other public datasets unseen during training and a prospectively acquired dataset. Comparing GDCNet to state-of-the-art EPI geometric distortion methods, our technique demonstrated statistically significant improvements in normalized mutual information between the corrected and reference images and 14 times faster processing times without requiring the acquisition of additional sequences for field map estimation.
We adapted the GDCNet method for distortion correction of low-bandwidth images acquired in a 47 mT permanent magnet system. These systems are characterized by large B0 spatial inhomogeneity and low signal sensitivity. In this case, the model used high-field images or images acquired with higher acquisition bandwidths as reference. The goal was to exploit the signal-to-noise ratio improvements that low bandwidth acquisition offers while limiting geometric distortion artifacts in the images. We investigated two versions of the model using different similarity loss functions. Both models were trained and tested on an in vitro dataset of image-quality phantoms. Additionally, we evaluated the models’ generalization ability to an in vivo dataset. The models successfully reduced distortions to levels comparable to those of the high bandwidth images in vitro and improved geometric accuracy in vivo. Furthermore, the method indicated robust performance on reference images with large levels of noise.
Incorporating the methods presented in this thesis into the software of a clinical MRI system will alleviate some of the barriers currently restricting the democratization of MR technology. First, automating the time-consuming process of artifact identification during image quality assessment will improve scan efficiency and augment expertise on-site by assisting non-skilled personnel. Second, efficient off-resonance correction during image reconstruction will ease the tight B0 homogeneity requirements of magnet design, allowing more compact and lightweight systems that are easier to refrigerate and site.
|
Page generated in 0.0806 seconds