Spelling suggestions: "subject:"lebesgue ceasure"" "subject:"lebesgue fmeasure""
1 |
Planar Lebesgue MeasureMartin, Nat G. 08 1900 (has links)
This thesis attempts to prove the Lebesgue measure is a concrete realization of measure.
|
2 |
Lebesgue Linear MeasureBeeman, William Edwin 08 1900 (has links)
This paper discusses the concept of a general definition of measure, and shows that the Lebesgue measure satisfies the requirements set forth for the ideal definition.
|
3 |
Some Properties of Negligible SetsButts, Hubert S. 06 1900 (has links)
In the study of sets of points certain sets are found to be negligible, especially when applied to the theory of functions. The purpose of this paper is to discuss three of these "negligible" types, namely, exhaustible sets, denumerable sets, and sets of Lebesgue measure zero. We will present a complete existential theory in q-space for the three set properties mentioned above, followed by a more restricted discussion in the linear continuum by use of interval properties.
|
4 |
On the Lebesgue IntegralKastine, Jeremiah D 18 March 2011 (has links)
We look from a new point of view at the definition and basic properties of the Lebesgue measure and integral on Euclidean spaces, on abstract spaces, and on locally compact Hausdorff spaces. We use mini sums to give all of them a unified treatment that is more efficient than the standard ones. We also give Fubini's theorem a proof that is nicer and uses much lighter technical baggage than the usual treatments.
|
5 |
Comportamento genérico de difeomorfismos do círculo / Generic behavior of circle diffeomorphismsAntunes, Leandro 23 February 2012 (has links)
Nós estudaremos o comportamento de difeomorfismos do círculo, tanto do ponto de vista combinatório quanto do ponto de vista topológico e da teoria da medida, seguindo os trabalhos de Michael Herman. A cada homeomorfismo do círculo podemos associar um número real positivo, denominado número de rotação. Mostraremos que existe um conjunto de números irracionais de medida de Lebesgue total na reta tal que, se f é um difeomorfismo do círculo de classe \'C POT. r \' que preserva a orientação, com r maior ou igual a 3 e com número de rotação nesse conjunto, então f é pelo menos \'C POT. r - 2\' -conjugada a uma translação irracional. Além disso, mostraremos que dado um caminho \'f IND. t\' de classe \'C POT. 1\' definido em um intervalo [a;b] no conjunto dos difeomorfismos do círculo de classe \'C POT. r\' que preservam a orientação, com r maior ou igual a 3, o conjunto dos parâmetros em que \'f IND. t\' é \'C POT. r - 2\' -conjugada a uma translação irracional tem medida de Lebesgue positiva, desde que os números de rotação em \'f IND. a\' e \'f IND. b\' sejam distintos / We will study the generic behavior of circle diffeomorphisms, in the combinatorial, topological and measure-theoretical sense, following the work of Michael Herman. To each order preserving homeomorphism of the circle we can associate a positive real number, called rotation number, which is invariant under conjugacy. We will show that there is a set of irrational numbers with full Lebesgue measure on R such that, if f is a circle diffeomorphism of class \'C POT. r\', with r greater or equal 3 and with rotation number in that set, then f is at least \'C POT. r - 2\' -conjugated to an irrational translation. Moreover, we will show that if ft is a \'C POT. 1\' -path defined on a interval [a;b] over the set of the circle diffeomorphisms orientation preserving, with r \'> or =\' 3, then the set of parameters where \'f IND. t\' is \'C POT. r - 2\' -conjugated to a irrational translation has positive Lebesgue measure, since the rotation numbers of \'f IND. a\' and \'f IND. b\' are distinct
|
6 |
Hole Probabilities for Determinantal Point Processes in the Complex PlaneAdhikari, Kartick January 2017 (has links) (PDF)
No description available.
|
7 |
Comportamento genérico de difeomorfismos do círculo / Generic behavior of circle diffeomorphismsLeandro Antunes 23 February 2012 (has links)
Nós estudaremos o comportamento de difeomorfismos do círculo, tanto do ponto de vista combinatório quanto do ponto de vista topológico e da teoria da medida, seguindo os trabalhos de Michael Herman. A cada homeomorfismo do círculo podemos associar um número real positivo, denominado número de rotação. Mostraremos que existe um conjunto de números irracionais de medida de Lebesgue total na reta tal que, se f é um difeomorfismo do círculo de classe \'C POT. r \' que preserva a orientação, com r maior ou igual a 3 e com número de rotação nesse conjunto, então f é pelo menos \'C POT. r - 2\' -conjugada a uma translação irracional. Além disso, mostraremos que dado um caminho \'f IND. t\' de classe \'C POT. 1\' definido em um intervalo [a;b] no conjunto dos difeomorfismos do círculo de classe \'C POT. r\' que preservam a orientação, com r maior ou igual a 3, o conjunto dos parâmetros em que \'f IND. t\' é \'C POT. r - 2\' -conjugada a uma translação irracional tem medida de Lebesgue positiva, desde que os números de rotação em \'f IND. a\' e \'f IND. b\' sejam distintos / We will study the generic behavior of circle diffeomorphisms, in the combinatorial, topological and measure-theoretical sense, following the work of Michael Herman. To each order preserving homeomorphism of the circle we can associate a positive real number, called rotation number, which is invariant under conjugacy. We will show that there is a set of irrational numbers with full Lebesgue measure on R such that, if f is a circle diffeomorphism of class \'C POT. r\', with r greater or equal 3 and with rotation number in that set, then f is at least \'C POT. r - 2\' -conjugated to an irrational translation. Moreover, we will show that if ft is a \'C POT. 1\' -path defined on a interval [a;b] over the set of the circle diffeomorphisms orientation preserving, with r \'> or =\' 3, then the set of parameters where \'f IND. t\' is \'C POT. r - 2\' -conjugated to a irrational translation has positive Lebesgue measure, since the rotation numbers of \'f IND. a\' and \'f IND. b\' are distinct
|
Page generated in 0.0353 seconds