• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a Planar Left-Handed Material with Broadband and Double Negative Characteristics for Reducing Antenna Beamwidth

Lo, Chin-yung 24 July 2007 (has links)
In this thesis, we described our efforts to achieve antenna radomes that enhance antenna gain by using the artificial synthesis structure of the left-handed material. The characteristics of the metamaterial are introduced. Also, we will analyze the phenomena of the left-handed material which distinguish them from the right-handed material. Moreover, we analyze and derive the theory to obtain the effect of the meta-materials with the metal line artificial synthesis array structure. Then, we will focus on the method of lowering the frequency of the left-handed material structure and discuss the frequency influence of the permeability, permittivity, and refractive index as the modulus of the refractive index is smaller than one or negative. We will adjust the structure to allow a wider useful frequency bandwidth. In order to prevent from the reflection of the metal lines to cause too much loss, we will simplify the structure of the single unit. Making use of the above-mentioned methods, we use the material to achieve an antenna radome. The meta-material radome can reduce the 3 dB beam-width by about 30 percent compared with the conformal patch at 5.25 GHz. Finally, we design a novel structure of unit cell based on the CSRR which is provided with a broadband negative index of refraction. The relative bandwidth of the LHM proposed in this thesis is 36.5%. In order to reduce loss tangent we remove the dielectric substrate, which further reduce the 3 dB beam-width.
2

Design of a Miniature Left-Handed Material for Gain Improvement of Antenna with Low Sensitivity to Return Loss

Lin, Kun-Hsien 24 July 2008 (has links)
In this thesis, we introduce a LHM (Left-Handed Material) with both negative permittivity and permeability. Improvement of gain antenna is achieved by utilizing the characteristics of the LHM which can focus the EM wave. We start with an analysis of electromagnetic characteristic of LHM, especially its negative index of refraction. Structures with only negative permittivity or negative permeability are also analyzed. Then, we design the structure of LHM that can reduce the sensitivity of S11 of an antenna. So that the antenna operating frequency is not changed even in the presence of the LHM. The LHM unit cell structure comes from the idea by combination of two basic SNG (Single Negative) structure. We design a unit cell whose index of refraction is negative and close to zero. Further, we combine LHM and antenna. Simulation and measurement results show that the LHM is effective. The reflection coefficient of antenna does not change much by the combination of proposed LHM. The half power beam¡Ðwidth of antenna become narrower. The antenna gain improvement can be about 3 dB or higher. Finally, the LHM has been miniaturized successfully, resulting in reduction in size by about 50%. Comparing simulation and measurement, we find the LHM is still effective. A dipole antenna is used to verify out design. The antenna gain has been enhanced and the reflection coefficient does not change much.
3

Metamaterial Antenna for Medical Applications

Hasan, Md Kamrul 14 October 2013 (has links)
No description available.
4

Analysis and design of novel electromagnetic metamaterials

Guo, Yunchuan January 2006 (has links)
This thesis introduces efficient numerical techniques for the analysis of novel electromagnetic metamaterials. The modelling is based on a Method of Moments modal analysis in conjunction with an interpolation scheme, which significantly accelerates the computations. Triangular basis functions are used that allow for modelling of arbitrary shaped metallic elements. Unlike the conventional methods, impedance interpolation is applied to derive the dispersion characteristics of planar periodic structures. With these techniques, the plane wave and the surface wave responses of fractal structures have been studied by means of transmission coefficients and dispersion diagrams. The multiband properties and the compactness of the proposed structures are presented. Based on this method, novel planar left-handed metamaterials are also proposed. Verifications of the left-handedness are presented by means of full wave simulation of finite planar arrays using commercial software and lab measurement. The structures are simple, readily scalable to higher frequencies and compatible with low-cost fabrication techniques.
5

Artificial Magnetic Materials: Limitations, Synthesis and Possibilities

Kabiri, Ali January 2010 (has links)
Artificial magnetic materials (AMMs) are a type of metamaterials which are engineered to exhibit desirable magnetic properties not found in nature. AMMs are realized by embedding electrically small metallic resonators aligned in parallel planes in a host dielectric medium. In the presence of a magnetic field, an electric current is induced on the inclusions leading to the emergence of an enhanced magnetic response inside the medium at the resonance frequency of the inclusions. AMMs with negative permeability are used to develop single negative, or double negative metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave or optical frequencies where the natural magnetic materials fail to work efficiently. Artificial magnetic materials have proliferating applications in microwave and optical frequency region. Such applications include inversely refracting the light beam, invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low profile antennas, planar superlensing, super-sensitive sensing, decoupling proximal high profile antennas, and enhancing solar cells efficiency, among others. AMMs have unique enabling features that allow for these important applications. Fundamental limitations on the performance of artificial magnetic materials have been derived. The first limitation which depends on the generic model of permeability functions expresses that the frequency dispersion in an AMM is limited by the desired operational bandwidth. The other constraints are derived based on the geometrical limitations of inclusions. These limitations are calculated based on a circuit model. Therefore, a formulation for permeability and magnetic susceptibility of the media based on a circuit model is developed. The formulation is in terms of a geometrical parameter that represents the geometrical characteristics of the inclusions such as area, perimeter and curvature, and a physical parameter that represents the physical, structural and fabrication characteristics of the medium. The effect of the newly introduced parameters on the effective permeability of the medium and the magnetic loss tangent are studied. In addition, the constraints and relations are used to methodically design artificial magnetic material meeting specific operational requirements. A novel design methodology based on an introduced analytical formulation for artificial magnetic material with desired properties is implemented. The synthesis methodology is performed in an iterative four-step algorithm. In the first step, the feasibility of the design is tested to meet the fundamental constraints. In consecutive steps, the geometrical and physical factors which are attributed to the area and perimeter of the inclusion are synthesized and calculated. An updated range of the inclusion's area and perimeter is obtained through consecutive iterations. Finally, the outcome of the iterative procedure is checked for geometrical realizability. The strategy behind the design methodology is generic and can be applied to any adopted circuit based model for AMMs. Several generic geometries are introduced to realize any combination of geometrically realizable area and perimeter (s,l) pairs. A realizable geometry is referred to a contour that satisfies Dido's inequality. The generic geometries introduced here can be used to fabricate feasible AMMs. The novel generic geometries not only can be used to enhance magnetic properties, but also they can be configured to provide specific permeability with desired dispersion function over a certain frequency bandwidth with a maximum magnetic loss tangent. The proposed generic geometries are parametric contours with uncorrelated perimeter and area function. Geometries are configured by tuning parameters in order to possess specified perimeter and surface area. The produced contour is considered as the inclusion's shape. The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the detailed characteristics of the RCR are studied. The RCRs are used as complementary resonators in design of the ground plane in a microstrip stop-band filter, and as the substrate in design of a miniaturized patch antenna. The performance of new designs is compared with the counterpart devices, and the advantages are discussed.
6

Artificial Magnetic Materials: Limitations, Synthesis and Possibilities

Kabiri, Ali January 2010 (has links)
Artificial magnetic materials (AMMs) are a type of metamaterials which are engineered to exhibit desirable magnetic properties not found in nature. AMMs are realized by embedding electrically small metallic resonators aligned in parallel planes in a host dielectric medium. In the presence of a magnetic field, an electric current is induced on the inclusions leading to the emergence of an enhanced magnetic response inside the medium at the resonance frequency of the inclusions. AMMs with negative permeability are used to develop single negative, or double negative metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave or optical frequencies where the natural magnetic materials fail to work efficiently. Artificial magnetic materials have proliferating applications in microwave and optical frequency region. Such applications include inversely refracting the light beam, invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low profile antennas, planar superlensing, super-sensitive sensing, decoupling proximal high profile antennas, and enhancing solar cells efficiency, among others. AMMs have unique enabling features that allow for these important applications. Fundamental limitations on the performance of artificial magnetic materials have been derived. The first limitation which depends on the generic model of permeability functions expresses that the frequency dispersion in an AMM is limited by the desired operational bandwidth. The other constraints are derived based on the geometrical limitations of inclusions. These limitations are calculated based on a circuit model. Therefore, a formulation for permeability and magnetic susceptibility of the media based on a circuit model is developed. The formulation is in terms of a geometrical parameter that represents the geometrical characteristics of the inclusions such as area, perimeter and curvature, and a physical parameter that represents the physical, structural and fabrication characteristics of the medium. The effect of the newly introduced parameters on the effective permeability of the medium and the magnetic loss tangent are studied. In addition, the constraints and relations are used to methodically design artificial magnetic material meeting specific operational requirements. A novel design methodology based on an introduced analytical formulation for artificial magnetic material with desired properties is implemented. The synthesis methodology is performed in an iterative four-step algorithm. In the first step, the feasibility of the design is tested to meet the fundamental constraints. In consecutive steps, the geometrical and physical factors which are attributed to the area and perimeter of the inclusion are synthesized and calculated. An updated range of the inclusion's area and perimeter is obtained through consecutive iterations. Finally, the outcome of the iterative procedure is checked for geometrical realizability. The strategy behind the design methodology is generic and can be applied to any adopted circuit based model for AMMs. Several generic geometries are introduced to realize any combination of geometrically realizable area and perimeter (s,l) pairs. A realizable geometry is referred to a contour that satisfies Dido's inequality. The generic geometries introduced here can be used to fabricate feasible AMMs. The novel generic geometries not only can be used to enhance magnetic properties, but also they can be configured to provide specific permeability with desired dispersion function over a certain frequency bandwidth with a maximum magnetic loss tangent. The proposed generic geometries are parametric contours with uncorrelated perimeter and area function. Geometries are configured by tuning parameters in order to possess specified perimeter and surface area. The produced contour is considered as the inclusion's shape. The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the detailed characteristics of the RCR are studied. The RCRs are used as complementary resonators in design of the ground plane in a microstrip stop-band filter, and as the substrate in design of a miniaturized patch antenna. The performance of new designs is compared with the counterpart devices, and the advantages are discussed.
7

Metamaterial inspired improved antennas and circuits

Brito, Davi Bibiano 06 December 2010 (has links)
Made available in DSpace on 2014-12-17T14:54:58Z (GMT). No. of bitstreams: 1 DaviBB_DISSERT_1-70.pdf: 4567680 bytes, checksum: 150ff5afc1806ca374278b4c00a1f5a3 (MD5) Previous issue date: 2010-12-06 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Metamaterials exhibiting negative refraction have attracted a great amount of attention in recent years mostly due to their exquisite electromagnetic properties. These materials are artificial structures that exhibit characteristics not found in nature. It is possible to obtain a metamaterial by combining artificial structures periodically. We investigated the unique properties of Split Ring Resonators, High impedance Surfaces and Frequency Selective Surfaces and composite metamaterials. We have successfully demonstrated the practical use of these structures in antennas and circuits. We experimentally confirmed that composite metamaterial can improve the performance of the structures considered in this thesis, at the frequencies where electromagnetic band gap transmission takes place
8

Asymptotic limits of negative group delay phenomenon in linear causal media

Kandic, Miodrag 07 October 2011 (has links)
Abnormal electromagnetic wave propagation characterized by negative group velocity and consequently negative group delay (NGD) has been observed in certain materials as well as in artificially built structures. Within finite frequency intervals where an NGD phenomenon is observed, higher frequency components of the applied waveform are propagated with phase advancement, not delay, relative to the lower frequency components. These media have found use in many applications that require positive delay compensation and an engineered phase characteristic, such as eliminating phase variation with frequency in phase shifters, beam-squint minimization in phased array antenna systems, size reduction of feed-forward amplifiers and others. The three principal questions this thesis addresses are: can a generic formulation for artificial NGD structures based on electric circuit resonators be developed; is it possible to derive a quantitative functional relationship (asymptotic limit) between the maximum achievable NGD and the identified trade-off quantity (out-of-band gain); and, can a microwave circuit exhibiting a fully loss-compensated NGD propagation in both directions be designed and implemented? A generic frequency-domain formulation of artificial NGD structures based on electric circuit resonators is developed and characterized by three parameters, namely center frequency, bandwidth and the out-of-band gain. The developed formulation is validated through several topologies reported in the literature. The trade-off relationship between the achievable NGD on one hand, and the out-of-band gain on the other, is identified. The out-of-band gain is shown to be proportional to transient amplitudes when waveforms with defined “turn on/off” times are propagated through an NGD medium. An asymptotic limit for achievable NGD as a function of the out-of-band gain is derived for multi-stage resonator-based NGD circuits as well as for an optimally engineered linear causal NGD medium. Passive NGD media exhibit loss which can be compensated for via active elements. However, active elements are unilateral in nature and therefore do not allow propagation in both directions. A bilateral gain-compensated circuit is designed and implemented, which overcomes this problem by employing a dual-amplifier configuration while preserving the overall circuit stability.
9

Asymptotic limits of negative group delay phenomenon in linear causal media

Kandic, Miodrag 07 October 2011 (has links)
Abnormal electromagnetic wave propagation characterized by negative group velocity and consequently negative group delay (NGD) has been observed in certain materials as well as in artificially built structures. Within finite frequency intervals where an NGD phenomenon is observed, higher frequency components of the applied waveform are propagated with phase advancement, not delay, relative to the lower frequency components. These media have found use in many applications that require positive delay compensation and an engineered phase characteristic, such as eliminating phase variation with frequency in phase shifters, beam-squint minimization in phased array antenna systems, size reduction of feed-forward amplifiers and others. The three principal questions this thesis addresses are: can a generic formulation for artificial NGD structures based on electric circuit resonators be developed; is it possible to derive a quantitative functional relationship (asymptotic limit) between the maximum achievable NGD and the identified trade-off quantity (out-of-band gain); and, can a microwave circuit exhibiting a fully loss-compensated NGD propagation in both directions be designed and implemented? A generic frequency-domain formulation of artificial NGD structures based on electric circuit resonators is developed and characterized by three parameters, namely center frequency, bandwidth and the out-of-band gain. The developed formulation is validated through several topologies reported in the literature. The trade-off relationship between the achievable NGD on one hand, and the out-of-band gain on the other, is identified. The out-of-band gain is shown to be proportional to transient amplitudes when waveforms with defined “turn on/off” times are propagated through an NGD medium. An asymptotic limit for achievable NGD as a function of the out-of-band gain is derived for multi-stage resonator-based NGD circuits as well as for an optimally engineered linear causal NGD medium. Passive NGD media exhibit loss which can be compensated for via active elements. However, active elements are unilateral in nature and therefore do not allow propagation in both directions. A bilateral gain-compensated circuit is designed and implemented, which overcomes this problem by employing a dual-amplifier configuration while preserving the overall circuit stability.
10

Numerical Simulations of Wave Propagation between a Left-Handed Material and a Right-Handed Material / Numeriska simuleringar av vågutbredning mellan ett vänsterhänt material och ett högerhänt material

Rana, Balwan January 2021 (has links)
The discovery of metamaterials has led to major advances in different fields of physics including optics, microwave engineering and acoustics. Specific to theoretical electromagnetism, the introduction of metamaterials have led to the development of negative-index materials (NIMs) with simultaneous negative permittivity and negative permeability with backward-wave propagation. In recent studies, exact analytical solutions for wave propagation from a step/graded-index interface between a right-handed material (RHM) and a left-handed material (LHM) have been obtained. This study attempts to provide numerical validation of the analytical solutions obtained by Dalarsson et al. by using the simulation tool CST. An square-SRR/strip-wire unit element was designed, with real part of relative permittivity equal to -1.96 and real part of relative permeability equal to -1.01. Such unit elements were orderly structured to produce a NIM structure. Furthermore, a positive-index material (PIM) structure was produced by reversing the sign of the material properties of the NIM. Both the results for the step- and graded-index interfaces have shown to possess backward-wave propagation for a normal incidence angle. The graded-index interface profiles have a more smooth and continuous wave propagation between the materials, which counteracts the effects of discontinuous material transitions present in step-index interface profiles. However, because the results of the present study were considerably affected by unwanted field effects, the analytical solutions are only qualitatively validated, and not validated in terms of their numerical accuracy. / Upptäckten av metamaterial har lett till stora framsteg inom olika fysikområden inklusive optik, mikrovågsteknik och akustik. Specifikt för teoretisk elektromagnetism, har introduktionen av metamaterial lett till utvecklingen av negativa indexmaterial (NIM) med samtidig negativ permittivitet och negativ permeabilitet med bakåtvågsutbredning. I nyligen genomförda studier, har exakta analytiska lösningar för vågutbredning över ett steg-/graderat- indexgränssnitt mellan ett högerhänt material (RHM) och ett vänsterhänt material (LHM) erhållits. Denna studie försöker tillhanda-hålla numerisk validering, med hjälp av simuleringsverktyget CST, av de analytiska lösningar som erhållits av Dalarsson et al. En square-SRR/strip-wire enhetselement designades, med realdelen av relativ permittivitet lika med -1,96 och realdelen av relativ permeabilitet lika med -1,01. Sådana enhetselement strukturerades för att producera en materialstruktur med negativt index. Dessutom producerades en materialstruktur med positivt index (PIM) genom att vända tecknet av materialegenskaperna hos det negativa indexmaterialet (NIM). Både resultaten för steggränssnittet och det graderade indexgränssnittet har visat sig ha bakåtvågutbredning för vinkelrätt infall. De graderade indexgränssnittsprofilerna har en mer jämn och kontinuerlig vågutbredning mellan materialen, vilket motverkar effekterna av diskontinuerliga materialövergångar som finns i stegindexgränssnittsprofiler. Men eftersom resultaten av den aktuella studien påverkades avsevärt av oönskade fälteffekter, har de analytiska lösningarna validerats endast kvalitativt och valideras inte i termer av deras numeriska noggrannhet.

Page generated in 0.4823 seconds