• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Miniature Printed Antennas and Filters Using Volumetric Reactive Pins and Lumped Circuit Loadings

Gupta, Saurabh 05 November 2014 (has links)
This dissertation presents a new technique for miniaturization of printed RF circuits and antennas. The technique is based on lumped circuit elements and volumetric reactive pin loadings. The vertical arrangement of the pins is shown to provide a meandered current path within the device volume enhancing the miniaturization achieved with sole application of lumped circuit components. The technique is applied for antenna and filter size reduction. In antenna applications, it is shown that due to the presence of the reactive pin loading the overall size of a printed antenna can be miniaturized without affecting the radiation efficiency performance. One of the major advantages of this approach over the existing miniaturization techniques is that it allows reducing the overall size of the antenna (i.e. the substrate size) in addition to its metallization footprint area. Specifically, three antenna designs are presented for GPS and ISM applications. Firstly, a miniaturized wide-band CDL antenna has been introduced. The antenna consists of two loops which are loaded with lumped inductors and coupling capacitors. The design is shown to exhibits 49% smaller footprint size as compared to a traditional patch antenna without degrading the bandwidth performance. Secondly, a circular polarized compact dual-band CDL GPS antenna loaded with lumped capacitors and vertical pins is shown. The antenna operates with >50% lesser area as compared to a traditional L2 patch antenna without degrading its radiation performance. Thirdly, a patch antenna with its cavity loaded with CSRRs is presented. The novelty of the design is that it provides circularly symmetric arrangement of CSRRs thereby enabling the antenna to exhibit circular polarization (CP). Apart from CSRR, further size reduction is obtained by simultaneously reducing the substrate size and ground plane metallization around the CSRRs and loading it with pins. The antenna is 44% smaller than a traditional patch antenna without causing degradation in the antenna's radiation efficiency performance. To extend the volumetric loading to filter applications, the last chapter of the dissertation presents a detailed analysis to understand how geometrical factors (e.g. periodicity, radius, width of the host transmission line, etc) affect the miniaturization performance and quality factor. As a design example, a 2GHz pin loaded hairline filter with 17% -3dB |S21| bandwidth and 1.5dB insertion loss is demonstrated. The footprint size of the filter is ~λ0/16×λ0/9 @ 2GHz and is 45% smaller than its traditional counterpart.
2

Study of Miniaturization Techniques for a UHF RFID Tag on Package

Lopez Reyes, Zulma 04 1900 (has links)
With the increasing demand of compact and lightweight wireless devices, there is a significant need to miniaturize the antennas, which are one of the largest radiofrequency components. The radiation performance of antennas degrades as their physical size becomes smaller in terms of operating wavelength [1]. The key challenge in antenna design, therefore, lies in the compromise between size and radiation performance. This challenge becomes critical for low frequency antennas such as for the RFID band. The Antenna-in-Package (AiP) concept, where the antenna is realized as part of the package along with the driving electronics, provides some console in terms of size as the antenna does not need any additional space. In this approach, the package becomes a functional module along with its primary job of protecting the components from the environment. This work aims to investigate various miniaturization techniques for a UHF RFID tag on package. Firstly, a dipole is given a 3D shape by carefully folding it over a package, in a manner that the currents on different segments add constructively. Secondly, the package material (which acts as the substrate for the antenna) is chosen to have a dielectric constant of 5.3 which further helps in size reduction. Finally, loading of slow-wave structures, comprising of inductors and capacitors, is used to achieve further miniaturization. The Artificial Transmission Line approach is utilized to determine the required values of the lumped components, and its location is optimized by analyzing the current distribution of the antenna to maintain a good efficiency. The RFID chip with a large capacitive impedance is conjugately matched to the antenna without an external matching network. This is done by carefully selecting the values of the lumped components as well as by adjusting the trace width of the antenna. The package has been realized through a low-loss filament (𝑡𝑎𝑛(𝛿) = 0.004) with the Raise3D Pro2 printer, and the conductor has been realized by copper tape using laser patterning technology with the laser platform PLS6MW. At an operational frequency of 866 MHz, a 𝑘𝑎 of 0.26, a read-range of 2.7 𝑚, and a radiation efficiency of approximately 32% is achieved.
3

Conception d'un système de navigation sans fil à faible consommation pour les personnes malvoyantes / Designing a wireless navigation system with low consumption for the visually impaired

Nguyen, Thanh Huong 14 November 2014 (has links)
Au cours des dernières décennies, le développement rapide de la technologie sans fil et micro-électronique a provoqué un profond impact sur notre vie quotidienne. Parallèlement à la tendance, les technologies d'assistance ont été révolutionnées en termes de miniaturisation et de portabilité. Les traditionnels encombrants systèmes de dispositifs aidés, à connexion filaire sont maintenant remplacés par d'autres plus compacts, légers et portables. Le nombre de personnes aveugles et ayant une déficience visuelle continue à faire face à de nombreuses difficultés dans la vie quotidienne, en particulier dans la mobilité et la navigation. La théorie de la substitution sensorielle dans laquelle l'information obtenue d'une modalité sensorielle, peut atteindre les structures du cerveau physiologiquement par d'autres modalités sensorielles; par conséquent, il est possible pour les personnes aveugles et malvoyantes d'obtenir les informations désirées par d'autres sens. Sur la base de ces technologies et principes, nous voulons améliorer le Tongue Display Unit, un dispositif de visio-tactile lingual a été inventé par le professeur Bach-y-Rita à un, dispositif à long terme sans fil portable pour la navigation. Afin de rendre ce dispositif autonome, certaines propriétés doivent être étudiées: l'optimisation de la consommation d'énergie (à faire à long terme) et la communication sans fil efficace. Nous avons fait un examen très détaillé afin de choisir les composants optimaux et la méthode adéquate pour notre système. La conception du matériel a été effectuée en choisissant le meilleur algorithme. Le module émetteur-récepteur sans fil basé sur ZigBee contribue à réduire la consommation globale d'énergie. Notre antenne omnidirectionnelle est appropriée pour une utilisation chez les personnes aveugles qui ne peuvent pas être orientés à l'avance. Nous avons modifié tous les composants de la TDU, du matériel au logiciel, à partir du contrôleur à l'actionneur. La conception de l'ensemble d'électrodes n'est pas rectangulaire comme traditionnellement mais sous une forme ronde avec un soutien utilisé pour la direction et à la navigation. Enfin, le système a été validé par TDU fonctionnement en temps réel et testé sur les utilisateurs réels. Les performances du système en termes de design et d'énergie ont été améliorées. La communication sans fil est plus efficace et consomme moins d'énergie. Les premiers résultats sur les essais des utilisateurs montrent une assez bonne perception de notre TDU. / Over the last decades, the rapid development of wireless technology and microelectronic has caused a profound impact on our daily lives. Alongside the trend, assistive technologies have revolutionized in terms of miniaturization and wearability. The traditional bulky aided devices systems with wired connection are now replaced by the compact, lightweight and portable ones. The number of blind and visually impaired people continues to deal with many difficulties in daily lives, especially in mobility and navigation. The theory of sensory substitution in which information gained from one sensory modality can reach brain structures physiologically through other sensory modalities; therefore, it is possible for the blind and visually impaired people to get desired information via other senses. Based on these technologies and principles, we want to enhance the Tongue Display Unit, a lingual visuo-tactile device was invented by Professor Bach-y-Rita to a wireless, wearable, long-term device for navigation. In order to make such device, some properties have to be studied: optimization of energy consumption (to make it long-term) and efficient wireless communication. We made a very detailed review in order to choose the optimal components and method for our system. The hardware design was calculated and selected the best algorithm. The ZigBee-based wireless transceiver module contributes to reducing the overall power consumption. Our omnidirectional antenna is appropriate for usage in blind people who cannot orient in advance. We modified all components of the TDU, from the hardware to software, from controller to actuator. The design of the electrode array is not rectangular as traditional but in a round shape which is supportively used for direction and navigation. Lastly the TDU system was validated by real-time operation and tested on real users. The performance of the system in terms of design and energy has been improved. The wireless communication is more effective and consumes less power. The primary results on users' trials show rather good perception on our TDU.
4

Conception d'antennes miniatures intégrées à leur support pour applications en télémédecine mobile / Design of small antenna embedded to their support for applications in telemedicine

Hamouda, Hafedh 01 October 2014 (has links)
La télémédecine et plus particulièrement la télémédecine mobile semble représenter l’avenir en termes de soins médicaux. Ce concept nécessite cependant pour sa viabilité, de disposer d’éléments rayonnants miniatures, fortement efficaces, et capables de communiquer sur plusieurs bandes. Ce mémoire présente la méthodologie de conception et l’optimisation d’antennes miniatures intégrées, dédiées à un dispositif spécifique permettant de réaliser une liaison radiofréquence entre un implant médical et le téléphone portable d’un patient. Cependant, la miniaturisation des antennes, éléments clés de ce concept, s’accompagne généralement d’une dégradation de son efficacité et de sa bande passante, ce qui rend délicat leur mise en œuvre sur au moins deux des points essentiels recherchés. La conception de ce type d'antennes nécessite donc une analyse très fine des phénomènes physiques mis en jeu dont notamment la limite théorique en termes de performances que l'on peut atteindre pour une antenne circonscrite à un volume donné. De plus, ces performances radioélectriques sont fortement dépendantes de l'environnement dans lequel est placée l’antenne. Par conséquent, l'influence de chaque partie constituant cet environnement doit être prise en compte lors de l'intégration, ce que nous décrivons également dans ce manuscrit à travers différentes solutions d’éléments rayonnants. / This thesis presents the design and the optimization of miniature antennas integrated in specific devices dedicated to ensure communications between medical implants and a mobile phone in the context of telemedicine applications. However, the miniaturization of antennas necessarily implies a degradation of efficiency and bandwidth, which makes it difficult for implementation. Then, the design of electrically small antennas requires a very good understanding of the physical phenomena such as the theoretical limits of performance in terms of bandwidth and efficiency that can be expected for a radiating element with given dimensions. Furthermore, the performance of an electrically small antenna is also highly dependent on the environment in which it is mounted. Therefore, its interaction with each part of its close environment was highlighted and analyzed.
5

Novel Metamaterial Blueprints and Elements for Electromagnetic Applications

Odabasi, Hayrettin 08 August 2013 (has links)
No description available.
6

Étude et conception de métamatériaux accordables pour la miniaturisation d’antennes aux fréquences micro-ondes / Study and design of tunable metamaterials for antenna miniaturization at microwave frequencies

Kristou, Nebil 08 June 2018 (has links)
Les antennes présentes dans la plupart des systèmes communicants comme les véhicules automobiles, les avions et les trains se multiplient et sont soumises à une contrainte d’intégration de plus en plus sévère. De nombreuses techniques de miniaturisation d’antennes existent et passent toutes par un compromis entre la taille et les performances (bande passante et/ou rendement de rayonnement). Pour les systèmes cités ci-dessus, les antennes sont souvent placées devant ou à proximité d’un réflecteur métallique (toit de véhicule, carlingue d’aéronef). Dans ce cas, l’épaisseur de système antennaire est une contrainte majeure et les métamatériaux de type Conducteur Magnétique Artificiel (CMA) ouvrent des perspectives intéressantes grâce à leurs propriétés électromagnétiques non conventionnelles. Cependant, pour les applications sub-GHz (RFID, LTE, PMR…), les CMA sont limités par les dimensions des cellules unitaires nécessaires à leur mise en œuvre (λg/4) ainsi que leur bande réduite de fonctionnement. Réduire leurs dimensions permet de rendre leur utilisation compatible avec le contexte des antennes miniatures intégrées. Ajouter l’agilité fréquentielle permet de palier le problème de la bande passante réduite dans le cas des antennes et des CMA miniaturisés en ajustant le fonctionnement du système antennaire sur une large bande passante. Cette thèse de doctorat propose d’étudier et de développer un nouveau système antennaire à faible profil composé d’une antenne miniature associée à une métasurface compacte reconfigurable en fréquence et compatible avec le standard NB-IoT dans la bande basse LTE (700 MHz – 960 MHz). / Antennas are now very integrated in several connected systems like cars, airplanes and trains. Many antenna miniaturization techniques exist and all go through a compromise between size and performance (bandwidth and/or radiation efficiency). For the systems mentioned above, the antennas are often placed near a metallic reflector (vehicle roof, aircraft cabin). Within this context, Artificial Magnetic Conductors (AMC) present an attractive reflector for low profile antennas which can take advantage of intrinsic zero reflection phase response to boost antenna performance without the need for thick quarter wave backplane. However, for sub-GHz applications (RFID, LTE, PMR ...), AMC are limited by the size of the unit cells necessary for their implementation (λg/4) as well as their reduced operating bandwidth. AMC miniaturization makes their use compatible with small antennas. Adding tunability restores the possibility of adjusting the operating frequency over a large bandwidth. This PhD thesis proposes to study and develop a new electrically small, low-profile antenna based on miniaturized and tunable AMC for the NB-IoT standard in low LTE band (700 MHz – 960 MHz).
7

Artificial Magnetic Materials: Limitations, Synthesis and Possibilities

Kabiri, Ali January 2010 (has links)
Artificial magnetic materials (AMMs) are a type of metamaterials which are engineered to exhibit desirable magnetic properties not found in nature. AMMs are realized by embedding electrically small metallic resonators aligned in parallel planes in a host dielectric medium. In the presence of a magnetic field, an electric current is induced on the inclusions leading to the emergence of an enhanced magnetic response inside the medium at the resonance frequency of the inclusions. AMMs with negative permeability are used to develop single negative, or double negative metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave or optical frequencies where the natural magnetic materials fail to work efficiently. Artificial magnetic materials have proliferating applications in microwave and optical frequency region. Such applications include inversely refracting the light beam, invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low profile antennas, planar superlensing, super-sensitive sensing, decoupling proximal high profile antennas, and enhancing solar cells efficiency, among others. AMMs have unique enabling features that allow for these important applications. Fundamental limitations on the performance of artificial magnetic materials have been derived. The first limitation which depends on the generic model of permeability functions expresses that the frequency dispersion in an AMM is limited by the desired operational bandwidth. The other constraints are derived based on the geometrical limitations of inclusions. These limitations are calculated based on a circuit model. Therefore, a formulation for permeability and magnetic susceptibility of the media based on a circuit model is developed. The formulation is in terms of a geometrical parameter that represents the geometrical characteristics of the inclusions such as area, perimeter and curvature, and a physical parameter that represents the physical, structural and fabrication characteristics of the medium. The effect of the newly introduced parameters on the effective permeability of the medium and the magnetic loss tangent are studied. In addition, the constraints and relations are used to methodically design artificial magnetic material meeting specific operational requirements. A novel design methodology based on an introduced analytical formulation for artificial magnetic material with desired properties is implemented. The synthesis methodology is performed in an iterative four-step algorithm. In the first step, the feasibility of the design is tested to meet the fundamental constraints. In consecutive steps, the geometrical and physical factors which are attributed to the area and perimeter of the inclusion are synthesized and calculated. An updated range of the inclusion's area and perimeter is obtained through consecutive iterations. Finally, the outcome of the iterative procedure is checked for geometrical realizability. The strategy behind the design methodology is generic and can be applied to any adopted circuit based model for AMMs. Several generic geometries are introduced to realize any combination of geometrically realizable area and perimeter (s,l) pairs. A realizable geometry is referred to a contour that satisfies Dido's inequality. The generic geometries introduced here can be used to fabricate feasible AMMs. The novel generic geometries not only can be used to enhance magnetic properties, but also they can be configured to provide specific permeability with desired dispersion function over a certain frequency bandwidth with a maximum magnetic loss tangent. The proposed generic geometries are parametric contours with uncorrelated perimeter and area function. Geometries are configured by tuning parameters in order to possess specified perimeter and surface area. The produced contour is considered as the inclusion's shape. The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the detailed characteristics of the RCR are studied. The RCRs are used as complementary resonators in design of the ground plane in a microstrip stop-band filter, and as the substrate in design of a miniaturized patch antenna. The performance of new designs is compared with the counterpart devices, and the advantages are discussed.
8

Artificial Magnetic Materials: Limitations, Synthesis and Possibilities

Kabiri, Ali January 2010 (has links)
Artificial magnetic materials (AMMs) are a type of metamaterials which are engineered to exhibit desirable magnetic properties not found in nature. AMMs are realized by embedding electrically small metallic resonators aligned in parallel planes in a host dielectric medium. In the presence of a magnetic field, an electric current is induced on the inclusions leading to the emergence of an enhanced magnetic response inside the medium at the resonance frequency of the inclusions. AMMs with negative permeability are used to develop single negative, or double negative metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave or optical frequencies where the natural magnetic materials fail to work efficiently. Artificial magnetic materials have proliferating applications in microwave and optical frequency region. Such applications include inversely refracting the light beam, invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low profile antennas, planar superlensing, super-sensitive sensing, decoupling proximal high profile antennas, and enhancing solar cells efficiency, among others. AMMs have unique enabling features that allow for these important applications. Fundamental limitations on the performance of artificial magnetic materials have been derived. The first limitation which depends on the generic model of permeability functions expresses that the frequency dispersion in an AMM is limited by the desired operational bandwidth. The other constraints are derived based on the geometrical limitations of inclusions. These limitations are calculated based on a circuit model. Therefore, a formulation for permeability and magnetic susceptibility of the media based on a circuit model is developed. The formulation is in terms of a geometrical parameter that represents the geometrical characteristics of the inclusions such as area, perimeter and curvature, and a physical parameter that represents the physical, structural and fabrication characteristics of the medium. The effect of the newly introduced parameters on the effective permeability of the medium and the magnetic loss tangent are studied. In addition, the constraints and relations are used to methodically design artificial magnetic material meeting specific operational requirements. A novel design methodology based on an introduced analytical formulation for artificial magnetic material with desired properties is implemented. The synthesis methodology is performed in an iterative four-step algorithm. In the first step, the feasibility of the design is tested to meet the fundamental constraints. In consecutive steps, the geometrical and physical factors which are attributed to the area and perimeter of the inclusion are synthesized and calculated. An updated range of the inclusion's area and perimeter is obtained through consecutive iterations. Finally, the outcome of the iterative procedure is checked for geometrical realizability. The strategy behind the design methodology is generic and can be applied to any adopted circuit based model for AMMs. Several generic geometries are introduced to realize any combination of geometrically realizable area and perimeter (s,l) pairs. A realizable geometry is referred to a contour that satisfies Dido's inequality. The generic geometries introduced here can be used to fabricate feasible AMMs. The novel generic geometries not only can be used to enhance magnetic properties, but also they can be configured to provide specific permeability with desired dispersion function over a certain frequency bandwidth with a maximum magnetic loss tangent. The proposed generic geometries are parametric contours with uncorrelated perimeter and area function. Geometries are configured by tuning parameters in order to possess specified perimeter and surface area. The produced contour is considered as the inclusion's shape. The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the detailed characteristics of the RCR are studied. The RCRs are used as complementary resonators in design of the ground plane in a microstrip stop-band filter, and as the substrate in design of a miniaturized patch antenna. The performance of new designs is compared with the counterpart devices, and the advantages are discussed.
9

Low-Profile Wideband Antennas Based on Tightly Coupled Dipole and Patch Elements

Irci, Erdinc 21 October 2011 (has links)
No description available.

Page generated in 0.0997 seconds