• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magneto-dielectric material characterization and RF antenna design

Han, Kyuhwan 21 September 2015 (has links)
A novel material characterization method for magneto-dielectric composite material was proposed. MD materials have been reported as providing new opportunities for effective antenna size reduction in many studies. Since MD materials have to be realized through material synthesis, an accurate measurement method is required to extract them. The proposed method, cavity perturbation technique using substrate integrated waveguide cavity resonator, has been demonstrated through theories, simulations and measurement that it can be used to extract both electric and magnetic properties of the MD composite material effectively. MD materials using cobalt-fluoropolymer have been synthesized and material design guidelines for antenna applications are also provided. The benefits of using MD materials on antenna miniaturization was also demonstrated by comparing the performance of an antenna on MD material to other antennae on high dielectric constant materials and FR-4 material. Through simulations and measurements, the MD material is a promising solution for next generation smartphone or wearable type applications.
2

Characterization of Magneto-Dielectric Materials for Microwave Devices / Karakterisering av magneto-dielektriska material för mikrovågsapplikationer

Lazraq Byström, Joseph January 2020 (has links)
There is an increasing interest in using new composite materials in microwave devices, to reduce size and weight while maintaining similar performances. A new promising material group is named magneto-dielectric materials, which have the permittivity and permeability values both larger than one. Compared to the commercially used dielectric materials, magneto-dielectric materials can achieve a larger miniaturization factor with the equivalent properties as dielectric materials. There is a very limited availability of commercial magneto-dielectric materials. A recent addition was from Rogers Corporation with MAGTREX 555, [1], that is available as a printed circuit board laminate. The material is limited to 500 MHz operational frequency due to its increased magnetic and dielectric losses. In this thesis the purpose is to understand the loss mechanisms, characterize and understand the state-of-the-art magneto-dielectric materials at microwaves, and to produce a magneto-dielectric material in the lab to understand the material better. A new material was developed with magneto-dielectric properties. The material was based on a polymer base of polystyrene that serves as a dielectric material and doped with nickel nanoparticles that produce the magnetic properties. The contents of the nanoparticles in the mix is a design variable. Nickel-polystyrene samples with different nickel contents of 0%, 2.3% and 4.5%, were produced in the lab and measured in-house to understand the loss mechanism and RF performance.
3

Magneto-Dielectric Wire Antennas Theory and Design

January 2013 (has links)
abstract: There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (μr>1;εr>1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any discontinuities, much like a metal antenna of the same shape. They are attractive alternatives to conventional whip and blade antennas because they can be placed conformal to a metallic ground plane without any performance penalty. A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit models are derived for the prototypical dipole and loop elements that include the effects of realistic dispersive magneto-dielectric materials of construction. A material selection law results, showing that: (a) The maximum attainable efficiency is determined by a single magnetic material parameter that we term the hesitivity: Closely related to Snoek's product, it measures the maximum magnetic conductivity of the material. (b) The maximum bandwidth is obtained by placing the highest amount of μ" loss in the frequency range of operation. As a result, high radiation efficiency antennas can be obtained not only from the conventional low loss (low μ") materials but also with highly lossy materials (tan(δm)>>1). The second approach used to analyze MDWAs is through solving the Green function problem of the infinite magneto-dielectric cylinder fed by a current loop. This solution sheds light on the leaky and guided waves supported by the magneto-dielectric structure and leads to useful design rules connecting the permeability of the material to the cross sectional area of the antenna in relation to the desired frequency of operation. The Green function problem of the permeable prolate spheroidal antenna is also solved as a good approximation to a finite cylinder. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
4

Estudo das propriedades estruturais e de transporte dos compÃsitos magneto-dielÃtricos [(Fe5/8Cr3/8)2O3]x-[(Fe1/4Cu3/8Ti3/8)2O3]100âx / Study of structural and transport properties of [(Fe5/8Cr3/8)2O3]x-[(Fe1/4Cu3/8Ti3/8)2O3]100-x magneto-dielectric composites

HÃlio Henrique Barbosa Rocha 27 January 2006 (has links)
O processamento em escala laboratorial de soluÃÃes sÃlidas, procedentes dos sistemas Fe2O3/CuO/TiO2 e Fe2O3/Cr2O3, dos seus compÃsitos, e o estudo das propriedades estruturais e de transporte estabelecem o tema principal do trabalho. As granadas ferrimagnÃticas despertam manifesto interesse quanto ao seu emprego em dispositivos aplicÃveis a sistemas de telecomunicaÃÃo operantes nas microondas, sobretudo, em funÃÃo das propriedades dielÃtricas e magnÃticas adequadas. Devido à semelhanÃa estequiomÃtrica, e com a finalidade de se obter materiais com propriedades similares, foram elaborados dois meios magneto-dielÃtricos: (Fe1/4Cu3/8Ti3/8)2O3, um titanato de cobre e ferro, e (Fe5/8Cr3/8)2O3, um Ãxido especÃfico de ferro e cromo. Estas soluÃÃes sÃlidas substitucionais foram sintetizadas por reaÃÃo de estado sÃlido. O processamento avanÃou envolvendo tratamentos mecÃnico e tÃrmico. Foram preparados espÃcimes pulverulentos e com configuraÃÃo definida. A estrutura cristalina dos espÃcimes foi identificada por difraÃÃo de raios-X. Os dados de difraÃÃo de raios-X por policristais foram refinados pelo emprego do mÃtodo de Rietveld. Fez-se uso da espectroscopia MÃssbauer para realizar a sondagem do ferro presente na estrutura cristalina. A morfologia dos espÃcimes, dispostos como peÃas cilÃndricas rÃgidas, foi explorada por Microscopia EletrÃnica de Varredura, assistida por microssonda EDX, para anÃlise quÃmica elementar. Por espectroscopia dielÃtrica foram investigadas as propriedades dielÃtricas permissividade dielÃtrica relativa e fator de perda dielÃtrico e a propriedade de transporte condutividade elÃtrica. As propriedades dielÃtricas e de transporte foram analisadas em funÃÃo da freqÃÃncia, a temperatura ambiente, numa faixa compreendida entre 100 Hz e 40 MHz. Dos dados por difraÃÃo de raios-X, alÃm da identificaÃÃo dos materiais avaliados, foram extraÃdas, apÃs refinamento estrutural, informaÃÃes cristalogrÃficas, no caso das soluÃÃes sÃlidas individuais, e sua quantificaÃÃo, no caso dos compÃsitos por elas constituÃdos. Pela espectroscopia MÃssbauer foram confirmados o estado de oxidaÃÃo do ferro presente nos materiais analisados, a geometria do sÃtio cristalino no qual està presente, a natureza magnÃtica das amostras, e seu provÃvel ordenamento, alÃm da quantificaÃÃo realizada em funÃÃo da quantidade de ferro presente nos compÃsitos. A morfologia dos materiais Ã, em geral, caracterizada pela diversidade de formas e tamanhos dos grÃos, bem como sua disposiÃÃo no artefato explorado. A anÃlise quÃmica elementar forneceu resultados quantitativos acerca dos elementos presentes nos meios investigados. Pela resposta observada na faixa de freqÃÃncia percorrida, ficou evidenciada uma regiÃo de dispersÃo, caracterÃstica do processo de polarizaÃÃo dipolar. Os resultados das propriedades dielÃtricas para as fases sintetizadas mostraram-se parcialmente antagÃnicos: a fase IB100 apresentou a maior permissividade dielÃtrica relativa, porÃm, maior fator de perda dielÃtrica em relaÃÃo à fase IC100, que por sua vez apresentou a menor permissividade dielÃtrica relativa entre todos os materiais investigados. Para os compÃsitos, formados pela mistura aleatÃria de quantidades especÃficas das duas fases sintetizadas, foi evidenciado um comportamento nÃo linear, de forma que estes nÃo representam apenas o reflexo das respostas observadas para as fases individualmente. A fase IB100, em virtude da constante dielÃtrica observada, à o material com maior potencial para aplicaÃÃes em altas freqÃÃncias.
5

Miniaturisation et modélisation d’antennes monopoles larges bandes utilisant des matériaux magnéto-diélectriques en bande VHF / Miniaturization and modelling of wide band monopole antennas using magneto-dielectric materials in VHF band

Kabalan, Aladdin 28 May 2019 (has links)
Les avions comportent plusieurs systèmes de navigation et de communication nécessitent des antennes VHF large bande. Réduire la taille de ses antennes est un enjeu majeur tout en gardant des bonnes performances. Cette thèse propose des nouvelles configurations d'antennes à profil bas utilisant des nouveaux matériaux nanocomposites non conducteurs constitués de nanoparticules magnétiques développés au Lab-STICC. Un monopole planaire large bande a été développé et optimisé avec un taux de miniaturisation de 60% grâce à l'utilisation d'un matériau magnéto-diélectrique de forte perméabilité et faible pertes couvrant seulement 5% de sa surface. Les résultats expérimentaux, en presque parfait accord avec les simulations, montrent que le diagramme de rayonnement est omnidirectionnel et que la polarisation est verticale, avec un bon niveau du gain. L'antenne monopole planaire insérée dans un MMD des dimensions limitées avec des pertes a été modélisée par un nouveau circuit équivalent multi résonant. Ce circuit est développé à partir de l'impédance d'entrée de l'antenne et des caractéristiques du MMD, et validé par les simulations avec un parfait accord entre les résultats. / Airplanes with multiple navigation and communication systems require broadband VHF antennas. Reduce the size of these antennas is a major challenge while keeping good performances. This thesis proposes new configurations of low profile antennas using new nanocomposite non-conductive materials consisting of magnetic nanoparticles developed at Lab-STICC. A broadband planar monopole has been developed and optimized with a 60% miniaturization rate thanks to the use of a high permeability and low loss magneto-dielectric material covering only 5% of its surface. The experimental results, in almost perfect agreement with the simulations, show that the radiation pattern is omnidirectional and that the polarization is vertical, with a good level of gain. The planar monopole antenna inserted in a MMD of limited dimensions with losses was modeled by a new multi-resonant equivalent circuit. This circuit is developed from the input impedance of the antenna and the characteristics of the MMD. and validated by the simulations with a perfect agreement between the results.
6

The quantum vacuum near time-dependent dielectrics

Bugler-Lamb, Samuel Lloyd January 2017 (has links)
The vacuum, as described by Quantum Field Theory, is not as empty as classical physics once led us to believe. In fact, it is characterised by an infinite energy stored in the ground state of its constituent fields. This infinite energy has real, tangible effects on the macroscopic clusters of matter that make up our universe. Moreover, the configuration of these clusters of matter within the vacuum in turn influences the form of the vacuum itself and so forth. In this work, we shall consider the changes to the quantum vacuum brought about by the presence of time-dependent dielectrics. Such changes are thought to be responsible for phenomena such as the simple and dynamical Casimir effects and Quantum Friction. After introducing the physical and mathematical descriptions of the electromagnetic quantum vacuum, we will begin by discussing some of the basic quasi-static effects that stem directly from the existence of an electromagnetic ground state energy, known as the \textit{zero-point energy}. These effects include the famous Hawking radiation and Unruh effect amongst others. We will then use a scenario similar to that which exhibits Cherenkov radiation in order to de-mystify the 'negative frequency' modes of light that often occur due to a Doppler shift in the presence of media moving at a constant velocity by showing that they are an artefact of the approximation of the degrees of freedom of matter to a macroscopic permittivity function. Here, absorption and dissipation of electromagnetic energy will be ignored for simplicity. The dynamics of an oscillator placed within this moving medium will then be considered and we will show that when the motion exceeds the speed of light in the dielectric, the oscillator will begin to absorb energy from the medium. It will be shown that this is due to the reversal of the 'radiation damping' present for lower velocity of stationary cases. We will then consider how the infinite vacuum energy changes in the vicinity, but outside, of this medium moving with a constant velocity and show that the presence of matter removes certain symmetries present in empty space leading to transfers of energy between moving bodies mediated by the electromagnetic field. Following on from this, we will then extend our considerations by including the dissipation and dispersion of electromagnetic energy within magneto-dielectrics by using a canonically quantised model referred to as 'Macroscopic QED'. We will analyse the change to the vacuum state of the electromagnetic field brought about by the presence of media with an arbitrary time dependence. It will be shown that this leads to the creation of particles tantamount to exciting the degrees of freedom of both the medium and the electromagnetic field. We will also consider the effect these time-dependencies have on the two point functions of the field amplitudes using the example of the electric field. Finally, we will begin the application of the macroscopic QED model to the path integral methods of quantum field theory with the purpose of making use of the full range of perturbative techniques that this entails, leaving the remainder of this adaptation for future work.
7

Artificial Magnetic Materials: Limitations, Synthesis and Possibilities

Kabiri, Ali January 2010 (has links)
Artificial magnetic materials (AMMs) are a type of metamaterials which are engineered to exhibit desirable magnetic properties not found in nature. AMMs are realized by embedding electrically small metallic resonators aligned in parallel planes in a host dielectric medium. In the presence of a magnetic field, an electric current is induced on the inclusions leading to the emergence of an enhanced magnetic response inside the medium at the resonance frequency of the inclusions. AMMs with negative permeability are used to develop single negative, or double negative metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave or optical frequencies where the natural magnetic materials fail to work efficiently. Artificial magnetic materials have proliferating applications in microwave and optical frequency region. Such applications include inversely refracting the light beam, invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low profile antennas, planar superlensing, super-sensitive sensing, decoupling proximal high profile antennas, and enhancing solar cells efficiency, among others. AMMs have unique enabling features that allow for these important applications. Fundamental limitations on the performance of artificial magnetic materials have been derived. The first limitation which depends on the generic model of permeability functions expresses that the frequency dispersion in an AMM is limited by the desired operational bandwidth. The other constraints are derived based on the geometrical limitations of inclusions. These limitations are calculated based on a circuit model. Therefore, a formulation for permeability and magnetic susceptibility of the media based on a circuit model is developed. The formulation is in terms of a geometrical parameter that represents the geometrical characteristics of the inclusions such as area, perimeter and curvature, and a physical parameter that represents the physical, structural and fabrication characteristics of the medium. The effect of the newly introduced parameters on the effective permeability of the medium and the magnetic loss tangent are studied. In addition, the constraints and relations are used to methodically design artificial magnetic material meeting specific operational requirements. A novel design methodology based on an introduced analytical formulation for artificial magnetic material with desired properties is implemented. The synthesis methodology is performed in an iterative four-step algorithm. In the first step, the feasibility of the design is tested to meet the fundamental constraints. In consecutive steps, the geometrical and physical factors which are attributed to the area and perimeter of the inclusion are synthesized and calculated. An updated range of the inclusion's area and perimeter is obtained through consecutive iterations. Finally, the outcome of the iterative procedure is checked for geometrical realizability. The strategy behind the design methodology is generic and can be applied to any adopted circuit based model for AMMs. Several generic geometries are introduced to realize any combination of geometrically realizable area and perimeter (s,l) pairs. A realizable geometry is referred to a contour that satisfies Dido's inequality. The generic geometries introduced here can be used to fabricate feasible AMMs. The novel generic geometries not only can be used to enhance magnetic properties, but also they can be configured to provide specific permeability with desired dispersion function over a certain frequency bandwidth with a maximum magnetic loss tangent. The proposed generic geometries are parametric contours with uncorrelated perimeter and area function. Geometries are configured by tuning parameters in order to possess specified perimeter and surface area. The produced contour is considered as the inclusion's shape. The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the detailed characteristics of the RCR are studied. The RCRs are used as complementary resonators in design of the ground plane in a microstrip stop-band filter, and as the substrate in design of a miniaturized patch antenna. The performance of new designs is compared with the counterpart devices, and the advantages are discussed.
8

Integration and miniaturization of antennas for system-on-package applications

Altunyurt, Nevin 05 April 2010 (has links)
Wireless communications have been an indispensable aspect of everyday life, and there is an increasing consumer demand for accessing several wireless communication technologies from a single, compact, mobile device. System-on-package (SOP) technology is an advanced packaging technology that has been proven to realize the convergence of multiple functions into miniaturized, high-performance systems to meet this demand. With the advancements in the SOP technology, the miniaturization of the front-end module has been achieved using embedded passives in multilayer packages. However, the integration of the antenna directly on the module package is still the barrier to achieve a fully-integrated, high-performance RF SOP system. The main reason for this missing link is that integrating the antenna on the package requires miniaturizing the antenna, which is a difficult task. The focus of this dissertation is to design high-performance antennas along with developing techniques for miniaturization and system-on-package (SOP) integration of these antennas to achieve fully-integrated SOP systems using advanced multilayer organic substrates and thin-film magneto-dielectric materials. The targeted spectrum for the antenna designs are 2.4/5 GHz WLAN/WiMAX and 60 GHz WPAN bands. Several novel antenna designs and configurations to integrate the antenna on the package along with the module are discussed in this dissertation. The advanced polymers used in this research are Liquid Crystalline Polymer (LCP), RXP, and thin-film magneto-dielectrics.
9

Artificial Magnetic Materials: Limitations, Synthesis and Possibilities

Kabiri, Ali January 2010 (has links)
Artificial magnetic materials (AMMs) are a type of metamaterials which are engineered to exhibit desirable magnetic properties not found in nature. AMMs are realized by embedding electrically small metallic resonators aligned in parallel planes in a host dielectric medium. In the presence of a magnetic field, an electric current is induced on the inclusions leading to the emergence of an enhanced magnetic response inside the medium at the resonance frequency of the inclusions. AMMs with negative permeability are used to develop single negative, or double negative metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave or optical frequencies where the natural magnetic materials fail to work efficiently. Artificial magnetic materials have proliferating applications in microwave and optical frequency region. Such applications include inversely refracting the light beam, invisibility cloaking, ultra miniaturizing and frequency bandwidth enhancing low profile antennas, planar superlensing, super-sensitive sensing, decoupling proximal high profile antennas, and enhancing solar cells efficiency, among others. AMMs have unique enabling features that allow for these important applications. Fundamental limitations on the performance of artificial magnetic materials have been derived. The first limitation which depends on the generic model of permeability functions expresses that the frequency dispersion in an AMM is limited by the desired operational bandwidth. The other constraints are derived based on the geometrical limitations of inclusions. These limitations are calculated based on a circuit model. Therefore, a formulation for permeability and magnetic susceptibility of the media based on a circuit model is developed. The formulation is in terms of a geometrical parameter that represents the geometrical characteristics of the inclusions such as area, perimeter and curvature, and a physical parameter that represents the physical, structural and fabrication characteristics of the medium. The effect of the newly introduced parameters on the effective permeability of the medium and the magnetic loss tangent are studied. In addition, the constraints and relations are used to methodically design artificial magnetic material meeting specific operational requirements. A novel design methodology based on an introduced analytical formulation for artificial magnetic material with desired properties is implemented. The synthesis methodology is performed in an iterative four-step algorithm. In the first step, the feasibility of the design is tested to meet the fundamental constraints. In consecutive steps, the geometrical and physical factors which are attributed to the area and perimeter of the inclusion are synthesized and calculated. An updated range of the inclusion's area and perimeter is obtained through consecutive iterations. Finally, the outcome of the iterative procedure is checked for geometrical realizability. The strategy behind the design methodology is generic and can be applied to any adopted circuit based model for AMMs. Several generic geometries are introduced to realize any combination of geometrically realizable area and perimeter (s,l) pairs. A realizable geometry is referred to a contour that satisfies Dido's inequality. The generic geometries introduced here can be used to fabricate feasible AMMs. The novel generic geometries not only can be used to enhance magnetic properties, but also they can be configured to provide specific permeability with desired dispersion function over a certain frequency bandwidth with a maximum magnetic loss tangent. The proposed generic geometries are parametric contours with uncorrelated perimeter and area function. Geometries are configured by tuning parameters in order to possess specified perimeter and surface area. The produced contour is considered as the inclusion's shape. The inclusions are accordingly termed Rose curve resonators (RCRs), Corrugated rectangular resonators (CRRs) and Sine oval resonators (SORs). Moreover, the detailed characteristics of the RCR are studied. The RCRs are used as complementary resonators in design of the ground plane in a microstrip stop-band filter, and as the substrate in design of a miniaturized patch antenna. The performance of new designs is compared with the counterpart devices, and the advantages are discussed.
10

Multicouches magnétiques à fréquences de résonance ajustable pour applications hyperfréquences / Magnetic multilayers with ajustable resonance frequencies for hyperfrequency applications

Bonneau-Brault, Aurélien 04 December 2013 (has links)
Cette thèse avait pour objectif d'augmenter la fréquence de travail d'un multicouche magnéto-diélectrique pour des applications des Nouvelles Technologies de l'Information et de la Communication (NTIC). Ainsi, deux types de structures ont été étudiés : des multicouches (CoO=CoFeB)n et des tricouches Py/Ru/Py. Dans les empilements (CoO=CoFeB)n, la montée en fréquence est assurée par une anisotropie de surface du CoFeB induite par une rugosité orientée à la surface de la couche CoO. Cette rugosité est générée par la géométrie de dépôt. La fréquence de résonance de ce système est ajustable sur toute la gamme de fréquence des NTIC par le choix des épaisseurs de CoO et de CoFeB. Ces propriétés magnétiques sont modélisées en ajoutant à l'anisotropie intrinsèque du CoFeB un terme démagnétisant. Celui-ci est calculé à partir des observations de la surface de la couche CoO par microscopie à force atomique. Les propriétés magnétiques obtenues sur le bicouche sont maintenues dans le cas d'un multicouche, montrant que la rugosité est peu affectée par l'empilement. Dans les tricouches Py/Ru/Py, le terme s'ajoutant à l'anisotropie intrinsèque du Py est induit par le couplage des deux couches de Py via les électrons de conduction de la couche de Ru (couplage RKKY). Selon les échantillons, le terme de couplage antiferromagnétique ou quadratique est prépondérant. La modélisation du comportement statique permet de quantifier ces termes de couplage. La modélisation du comportement dynamique prédit les deux fréquences de résonance caractéristiques observées expérimentalement. / The aim of this thesis was to increase the working frequency of a magneto-dielectric multilayer for ICT applications. Two structures were studied : (CoO=CoFeB)n multilayers and Py/Ru/Py trilayer. In (CoO=CoFeB)n stacks, the CoFeB resonance frequency is increased thanks to a surface anisotropy induced by the CoO oriented roughness. This roughness is generated by the deposition geometry. The resonance frequency of this system is adjustable over the entire ICT frequency range by choosing the CoO and CoFeB thicknesses. These magnetic properties are simulated by adding a demagnetizing term to the CoFeB intrinsic volume anisotropy. This term is calculated from AFM observations of CoO surface. The magnetic properties of the bilayer are not degraded in multilayers because the roughness is poorly affected by the stacking. In trilayer Py/Ru/Py, the term added to the Py intrinsic anisotropy is induced by the coupling of the two Py layers via the conduction electrons of Ru (RKKY coupling). Depending on the samples, the quadratic or antiferromagnetic coupling term is dominant. The hysteresis loop fitting leads to the coupling terms values. The dynamic properties calculus predicts the two resonance frequencies experimentally observed.

Page generated in 0.0522 seconds