• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation of Survival with a Combination of Prevalent and Incident Cases in the Presence of Length Bias

Makvandi-Nejad, Ewa 24 September 2012 (has links)
In studying natural history of a disease, incident studies provide the best quality estimates; in contrast, prevalent studies introduce a sampling bias, which, if the onset time of the disease follows a stationary Poisson process, is called length bias. When both types of data are available, combining the samples under the assumption that failure times in incident and prevalent cohorts come from the same distribution function, could improve the estimation process from a revalent sample. We verify this assumption using a Smirnov type of test and construct a likelihood function from a combined sample to parametrically estimate the survival through maximum likelihood approach. Finally, we use Accelerated Failure Time models to compare the effect of covariates on survival in incident, prevalent, and combined populations. Properties of the proposed test and the combined estimator are assessed using simulations, and illustrated with data from the Canadian Study of Health and Aging.
2

Estimation of Survival with a Combination of Prevalent and Incident Cases in the Presence of Length Bias

Makvandi-Nejad, Ewa 24 September 2012 (has links)
In studying natural history of a disease, incident studies provide the best quality estimates; in contrast, prevalent studies introduce a sampling bias, which, if the onset time of the disease follows a stationary Poisson process, is called length bias. When both types of data are available, combining the samples under the assumption that failure times in incident and prevalent cohorts come from the same distribution function, could improve the estimation process from a revalent sample. We verify this assumption using a Smirnov type of test and construct a likelihood function from a combined sample to parametrically estimate the survival through maximum likelihood approach. Finally, we use Accelerated Failure Time models to compare the effect of covariates on survival in incident, prevalent, and combined populations. Properties of the proposed test and the combined estimator are assessed using simulations, and illustrated with data from the Canadian Study of Health and Aging.
3

Estimation of Survival with a Combination of Prevalent and Incident Cases in the Presence of Length Bias

Makvandi-Nejad, Ewa January 2012 (has links)
In studying natural history of a disease, incident studies provide the best quality estimates; in contrast, prevalent studies introduce a sampling bias, which, if the onset time of the disease follows a stationary Poisson process, is called length bias. When both types of data are available, combining the samples under the assumption that failure times in incident and prevalent cohorts come from the same distribution function, could improve the estimation process from a revalent sample. We verify this assumption using a Smirnov type of test and construct a likelihood function from a combined sample to parametrically estimate the survival through maximum likelihood approach. Finally, we use Accelerated Failure Time models to compare the effect of covariates on survival in incident, prevalent, and combined populations. Properties of the proposed test and the combined estimator are assessed using simulations, and illustrated with data from the Canadian Study of Health and Aging.
4

Goodness-of-Fit for Length-Biased Survival Data with Right-Censoring

Younger, Jaime 02 February 2012 (has links)
Cross-sectional surveys are often used in epidemiological studies to identify subjects with a disease. When estimating the survival function from onset of disease, this sampling mechanism introduces bias, which must be accounted for. If the onset times of the disease are assumed to be coming from a stationary Poisson process, this bias, which is caused by the sampling of prevalent rather than incident cases, is termed length-bias. A one-sample Kolomogorov-Smirnov type of goodness-of-fit test for right-censored length-biased data is proposed and investigated with Weibull, log-normal and log-logistic models. Algorithms detailing how to efficiently generate right-censored length-biased survival data of these parametric forms are given. Simulation is employed to assess the effects of sample size and censoring on the power of the test. Finally, the test is used to evaluate the goodness-of-fit using length-biased survival data of patients with dementia from the Canadian Study of Health and Aging.
5

Goodness-of-Fit for Length-Biased Survival Data with Right-Censoring

Younger, Jaime 02 February 2012 (has links)
Cross-sectional surveys are often used in epidemiological studies to identify subjects with a disease. When estimating the survival function from onset of disease, this sampling mechanism introduces bias, which must be accounted for. If the onset times of the disease are assumed to be coming from a stationary Poisson process, this bias, which is caused by the sampling of prevalent rather than incident cases, is termed length-bias. A one-sample Kolomogorov-Smirnov type of goodness-of-fit test for right-censored length-biased data is proposed and investigated with Weibull, log-normal and log-logistic models. Algorithms detailing how to efficiently generate right-censored length-biased survival data of these parametric forms are given. Simulation is employed to assess the effects of sample size and censoring on the power of the test. Finally, the test is used to evaluate the goodness-of-fit using length-biased survival data of patients with dementia from the Canadian Study of Health and Aging.
6

Goodness-of-Fit for Length-Biased Survival Data with Right-Censoring

Younger, Jaime 02 February 2012 (has links)
Cross-sectional surveys are often used in epidemiological studies to identify subjects with a disease. When estimating the survival function from onset of disease, this sampling mechanism introduces bias, which must be accounted for. If the onset times of the disease are assumed to be coming from a stationary Poisson process, this bias, which is caused by the sampling of prevalent rather than incident cases, is termed length-bias. A one-sample Kolomogorov-Smirnov type of goodness-of-fit test for right-censored length-biased data is proposed and investigated with Weibull, log-normal and log-logistic models. Algorithms detailing how to efficiently generate right-censored length-biased survival data of these parametric forms are given. Simulation is employed to assess the effects of sample size and censoring on the power of the test. Finally, the test is used to evaluate the goodness-of-fit using length-biased survival data of patients with dementia from the Canadian Study of Health and Aging.
7

Goodness-of-Fit for Length-Biased Survival Data with Right-Censoring

Younger, Jaime January 2012 (has links)
Cross-sectional surveys are often used in epidemiological studies to identify subjects with a disease. When estimating the survival function from onset of disease, this sampling mechanism introduces bias, which must be accounted for. If the onset times of the disease are assumed to be coming from a stationary Poisson process, this bias, which is caused by the sampling of prevalent rather than incident cases, is termed length-bias. A one-sample Kolomogorov-Smirnov type of goodness-of-fit test for right-censored length-biased data is proposed and investigated with Weibull, log-normal and log-logistic models. Algorithms detailing how to efficiently generate right-censored length-biased survival data of these parametric forms are given. Simulation is employed to assess the effects of sample size and censoring on the power of the test. Finally, the test is used to evaluate the goodness-of-fit using length-biased survival data of patients with dementia from the Canadian Study of Health and Aging.
8

Estimation of wood fibre length distributions from censored mixture data

Svensson, Ingrid January 2007 (has links)
<p>The motivating forestry background for this thesis is the need for fast, non-destructive, and cost-efficient methods to estimate fibre length distributions in standing trees in order to evaluate the effect of silvicultural methods and breeding programs on fibre length. The usage of increment cores is a commonly used non-destructive sampling method in forestry. An increment core is a cylindrical wood sample taken with a special borer, and the methods proposed in this thesis are especially developed for data from increment cores. Nevertheless the methods can be used for data from other sampling frames as well, for example for sticks with the shape of an elongated rectangular box.</p><p>This thesis proposes methods to estimate fibre length distributions based on censored mixture data from wood samples. Due to sampling procedures, wood samples contain cut (censored) and uncut observations. Moreover the samples consist not only of the fibres of interest but of other cells (fines) as well. When the cell lengths are determined by an automatic optical fibre-analyser, there is no practical possibility to distinguish between cut and uncut cells or between fines and fibres. Thus the resulting data come from a censored version of a mixture of the fine and fibre length distributions in the tree. The methods proposed in this thesis can handle this lack of information.</p><p>Two parametric methods are proposed to estimate the fine and fibre length distributions in a tree. The first method is based on grouped data. The probabilities that the length of a cell from the sample falls into different length classes are derived, the censoring caused by the sampling frame taken into account. These probabilities are functions of the unknown parameters, and ML estimates are found from the corresponding multinomial model.</p><p>The second method is a stochastic version of the EM algorithm based on the individual length measurements. The method is developed for the case where the distributions of the true lengths of the cells at least partially appearing in the sample belong to exponential families. The cell length distribution in the sample and the conditional distribution of the true length of a cell at least partially appearing in the sample given the length in the sample are derived. Both these distributions are necessary in order to use the stochastic EM algorithm. Consistency and asymptotic normality of the stochastic EM estimates is proved.</p><p>The methods are applied to real data from increment cores taken from Scots pine trees (Pinus sylvestris L.) in Northern Sweden and further evaluated through simulation studies. Both methods work well for sample sizes commonly obtained in practice.</p>
9

Estimation of wood fibre length distributions from censored mixture data

Svensson, Ingrid January 2007 (has links)
The motivating forestry background for this thesis is the need for fast, non-destructive, and cost-efficient methods to estimate fibre length distributions in standing trees in order to evaluate the effect of silvicultural methods and breeding programs on fibre length. The usage of increment cores is a commonly used non-destructive sampling method in forestry. An increment core is a cylindrical wood sample taken with a special borer, and the methods proposed in this thesis are especially developed for data from increment cores. Nevertheless the methods can be used for data from other sampling frames as well, for example for sticks with the shape of an elongated rectangular box. This thesis proposes methods to estimate fibre length distributions based on censored mixture data from wood samples. Due to sampling procedures, wood samples contain cut (censored) and uncut observations. Moreover the samples consist not only of the fibres of interest but of other cells (fines) as well. When the cell lengths are determined by an automatic optical fibre-analyser, there is no practical possibility to distinguish between cut and uncut cells or between fines and fibres. Thus the resulting data come from a censored version of a mixture of the fine and fibre length distributions in the tree. The methods proposed in this thesis can handle this lack of information. Two parametric methods are proposed to estimate the fine and fibre length distributions in a tree. The first method is based on grouped data. The probabilities that the length of a cell from the sample falls into different length classes are derived, the censoring caused by the sampling frame taken into account. These probabilities are functions of the unknown parameters, and ML estimates are found from the corresponding multinomial model. The second method is a stochastic version of the EM algorithm based on the individual length measurements. The method is developed for the case where the distributions of the true lengths of the cells at least partially appearing in the sample belong to exponential families. The cell length distribution in the sample and the conditional distribution of the true length of a cell at least partially appearing in the sample given the length in the sample are derived. Both these distributions are necessary in order to use the stochastic EM algorithm. Consistency and asymptotic normality of the stochastic EM estimates is proved. The methods are applied to real data from increment cores taken from Scots pine trees (Pinus sylvestris L.) in Northern Sweden and further evaluated through simulation studies. Both methods work well for sample sizes commonly obtained in practice.

Page generated in 0.0297 seconds