• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 77
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 227
  • 82
  • 36
  • 31
  • 28
  • 25
  • 21
  • 20
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Distribution and frequency of myeloid and t cell populations in the small intestine of newborn and weaned calves

Fries, Patrick Norbert 25 August 2011
The development of mucosal dendritic cells (DCs) in cattle is poorly understood and an analysis of myeloid cells in the bovine small intestine is required to increase our knowledge in this area. The phenotype, frequency and distribution of mucosal myeloid and lymphoid lamina propria leukocytes (LPL) and intraepithelial leukocytes (IEL) in the ileum and jejunum of newborn calves (3-5 weeks old) were analyzed using flow cytometry and immunohistochemistry (IHC). LPL and IEL were isolated through the use of chemical and enzymatic incubations. Costaining with a CD45-specific monoclonal antibody allowed us to exclude all non-leukocytic cells from our analysis of IEL and LPL. The morphology of CD45+CD11c+MHC Class II+ cells isolated from the lamina propria (LP) of ileum and jejunum showed myeloid characteristics, validating the use of CD11c and MHC Class II co-expression to identify myeloid cells. Regional differences in the frequency and number of leukocytes isolated from the IEL and LP compartments of the ileum and jejunum were analyzed in newborn calves. The CD11cHiCD14+ and CD335+ NK cell populations were significantly more abundant in the ileum than the jejunum. IHC was then used to identify the distribution of myeloid cells within the intestine. This analysis confirmed the presence of a variety of myeloid cell populations within the LP. Furthermore, CD11c+ cells were uniquely distributed within the jejunal, but not the ileal IEL compartment. In contrast, CD11b+ cells were present in the ileal, but absent from the jejunal, IEL compartment. A comparison of myeloid cell populations isolated from jejunum and blood dentified distinct mucosal DC populations, such as CD11c+CD13+ cells, which were present in he jejunum but absent from blood. The phenotype, frequency and distribution of IEL and LPL in the ileum and jejunum of weaned calves (6 months old) were then investigated. Significant regional differences were observed when comparing mucosal T cell populations with CD8+ and γδ T cells more abundant in the ileum and CD4+ T cells more abundant in the jejunum. Proportionally, there were no significant differences between the frequency and number of myeloid populations in the two regions. IHC was, once again, used to confirm these unique distributions of cells within each region. CD11b+ cells were present in the LP of both the ileum and jejunum, although a small number of CD11b+ cells were found in the ileal epithelium. CD4+ T cells were restricted to the LP, while CD8+ and γδ T cells were restricted to the IEL compartment. Significant age-related changes were observed when comparing mucosal leukocyte populations in the ileum and jejunum of newborn and 6 month old calves. In the ileum there was an age-related enrichment of CD8+ and γδ T cells, while in the jejunum there was enrichment in CD4+ and CD8+ T cells. In contrast, total myeloid (CD11c+MHC Class II+) cells number remained unchanged but there was a significant age-related enrichment of DC subpopulations (CD13, CD26, CD205). In conclusion, the ileum and jejunum of the newborn calf was populated by diverse myeloid subpopulations, some of which were distinct from myeloid subpopualtions identified in blood. Furthermore, the total number of CD11cHiMHC Class II+ myeloid cells isolated from a 10 cm segment of intestine did not change with age. If neonatal DCs are functionally equivalent to DCs present in weaned calves then the neonatal mucosal immune system appears to have an equivalent capacity to acquire and present antigens acquired from diet, commensal microflora, or pathogens. The one limitation to this conclusion may be the marked difference in the distribution of intraepithelial DC and macrophage distribution when comparing newborn and weaned calves.
82

Distribution and frequency of myeloid and t cell populations in the small intestine of newborn and weaned calves

Fries, Patrick Norbert 25 August 2011 (has links)
The development of mucosal dendritic cells (DCs) in cattle is poorly understood and an analysis of myeloid cells in the bovine small intestine is required to increase our knowledge in this area. The phenotype, frequency and distribution of mucosal myeloid and lymphoid lamina propria leukocytes (LPL) and intraepithelial leukocytes (IEL) in the ileum and jejunum of newborn calves (3-5 weeks old) were analyzed using flow cytometry and immunohistochemistry (IHC). LPL and IEL were isolated through the use of chemical and enzymatic incubations. Costaining with a CD45-specific monoclonal antibody allowed us to exclude all non-leukocytic cells from our analysis of IEL and LPL. The morphology of CD45+CD11c+MHC Class II+ cells isolated from the lamina propria (LP) of ileum and jejunum showed myeloid characteristics, validating the use of CD11c and MHC Class II co-expression to identify myeloid cells. Regional differences in the frequency and number of leukocytes isolated from the IEL and LP compartments of the ileum and jejunum were analyzed in newborn calves. The CD11cHiCD14+ and CD335+ NK cell populations were significantly more abundant in the ileum than the jejunum. IHC was then used to identify the distribution of myeloid cells within the intestine. This analysis confirmed the presence of a variety of myeloid cell populations within the LP. Furthermore, CD11c+ cells were uniquely distributed within the jejunal, but not the ileal IEL compartment. In contrast, CD11b+ cells were present in the ileal, but absent from the jejunal, IEL compartment. A comparison of myeloid cell populations isolated from jejunum and blood dentified distinct mucosal DC populations, such as CD11c+CD13+ cells, which were present in he jejunum but absent from blood. The phenotype, frequency and distribution of IEL and LPL in the ileum and jejunum of weaned calves (6 months old) were then investigated. Significant regional differences were observed when comparing mucosal T cell populations with CD8+ and γδ T cells more abundant in the ileum and CD4+ T cells more abundant in the jejunum. Proportionally, there were no significant differences between the frequency and number of myeloid populations in the two regions. IHC was, once again, used to confirm these unique distributions of cells within each region. CD11b+ cells were present in the LP of both the ileum and jejunum, although a small number of CD11b+ cells were found in the ileal epithelium. CD4+ T cells were restricted to the LP, while CD8+ and γδ T cells were restricted to the IEL compartment. Significant age-related changes were observed when comparing mucosal leukocyte populations in the ileum and jejunum of newborn and 6 month old calves. In the ileum there was an age-related enrichment of CD8+ and γδ T cells, while in the jejunum there was enrichment in CD4+ and CD8+ T cells. In contrast, total myeloid (CD11c+MHC Class II+) cells number remained unchanged but there was a significant age-related enrichment of DC subpopulations (CD13, CD26, CD205). In conclusion, the ileum and jejunum of the newborn calf was populated by diverse myeloid subpopulations, some of which were distinct from myeloid subpopualtions identified in blood. Furthermore, the total number of CD11cHiMHC Class II+ myeloid cells isolated from a 10 cm segment of intestine did not change with age. If neonatal DCs are functionally equivalent to DCs present in weaned calves then the neonatal mucosal immune system appears to have an equivalent capacity to acquire and present antigens acquired from diet, commensal microflora, or pathogens. The one limitation to this conclusion may be the marked difference in the distribution of intraepithelial DC and macrophage distribution when comparing newborn and weaned calves.
83

Caffeine Supplementation and Moderate Intensity Exercise Modulates the Cytotoxic Lymphocyte Subset (CD+8) in NaIve and Tolerant Individuals

Fedor, Elizabeth Ann 01 December 2010 (has links)
The purpose of this investigation was to determine the effects of caffeine supplementation on caffeine tolerant and caffeine naïve individual’s lymphocyte counts, apoptosis and migration levels. In addition, effects of exercise on post-caffeine ingestion lymphocyte counts, apoptosis and migration levels were determined. It was hypothesized that caffeine would alter the immune system cell counts, but that exercise would be able to restore the immune system to homeostasis. Seventeen Western Kentucky University students were tested (males n=7, females n=10; n=7: caffeine tolerant= 200mg or more per day group, n=9: caffeine naïve= 50mg or less per day group). In this double-blind investigation, all participants completed two exercise bouts: 30 min of treadmill running at 60-80% HRR once with a placebo drink before exercise and once with 6 mg/kg body weight of caffeine drink completed in a counterbalanced manner. Blood was taken at rest, 30 min after drink ingestion, immediately post exercise, and 60 min post exercise. Blood was stained with antibody markers (Annexin V to determine apoptotic cell counts, CX3CR1 to determine cell migration, CD4=helper T cells, CD8=cytotoxic T cells, CD19=B cells). Blood was analyzed using flow cytometry. We found that cytotoxic T cells showed significant increases following the caffeinated run in both groups combined (tolerant and naïve, p=0.001) and specifically in the naïve group on the caffeine run (p=.004). We did not see any significant changes in CD4, or CD19 cell counts. There were no significant changes in CD4, CD8 or CD19 cell migration or apoptosis. Our results showed that caffeine supplementation causes an increased effect on cytotoxic T cells counts when combined with exercise, and this effect was greater for the caffeine naïve group. The combined effects of caffeine and exercise may have elevated the plasma catecholamine and cortisol levels which are associated with immune cell function and movement. CD8 cells have a greater density of β-receptors, which are influenced by catecholamine, and may explain the increase in their cell counts compared to CD4 and CD19.
84

Cytokines and immune balance in preeclampsia : a survey of some immunological variables and methods in the study of preeclampsia

Jonsson, Yvonne January 2005 (has links)
Preeclampsia is one of the most feared pregnancy complications, with a risk of maternal and fetal death and with no ideal therapy readily available. The cause of this strictly pregnancyrelated disease is still unknown and is therefore a great challenge to all researchers in the field of pregnancy-related pathophysiology. Today, the dominating theory of the origin of preeclampsia is defective initial placentation with insufficient penetration of the trophoblasts, leading to impaired maternal blood flow through narrow spiral arteries. However, the cause of this defective trophoblast behavior is not known. The maternal immune system has been proposed to have an influence on both the placentation and the subsequent systemic reactions. Therefore, it is very interesting to study the maternal immune system during preeclampsia, in hope of achieving a better understanding of this puzzling disease. Earlier studies have suggested that normal pregnancy requires a shift to a Th2/antiinflammatory type of immunity, at least directed towards the fetus and placenta, while some pregnancy complications, such as preeclampsia, could be due to a skewed Th1/proinflammatory type of immunity. However, the results from earlier studies designed to test the Th1/Th2 hypothesis in preeclampsia have not been consistent. Therefore, the aim of this thesis was to examine if established preeclampsia is associated with increased innate inflammatory responses and a deviation of adaptive responses towards Th1 when compared with normal pregnancy. Enumerations of cytokine-producing cells from peripheral blood did not show any difference in the production of IFN-γ, IL-4, IL-10 and IL-12 between women with preeclampsia and normal pregnancies. However, a decrease in the spontaneously produced levels of IL-5 was detected in cell cultures on peripheral blood mononuclear cells in women with preeclampsia. Furthermore, a decreased production of IL-10 in response to paternal antigens, believed to represent the fetus, was also detected for the preeclamptic women. Serum analysis showed increased levels of the pro-inflammatory mediators IL-6 and IL-8 during preeclampsia. Also, preeclamptic women displayed increased serum levels of the soluble IL-4 receptor, but no difference in the levels of IL-4 compared to normal pregnant women. This was an elusive finding, since the receptor was originally thought to reflect the levels of IL-4, but has recently been shown to have both agonistic and antagonistic properties on the IL-4 levels. Further studies of the local immune responses in the placenta showed no difference in the immunohistochemical staining of IL-4 and TNF-α between women with preeclampsia and women with normal pregnancies. In general, there were no hallmarks of abnormal morphology in the placental sections examined, regardless of diagnosis. In conclusion, the decreased levels of IL-10 in response to paternal antigens and the systemically increased levels of IL-6 and IL-8 suggest a specific decrease in antiinflammatory responses towards fetal antigens, together with a systemic activation of proinflammatory mediators during preeclampsia. Furthermore, the decreased production of IL-5 also indicates, at least partly, decreased Th2 responses in the established preeclampsia. / Figure 1 on page 6 is republished in the Ph.D. thesis with the kind permisson of Blackwell Publishing (http://www.blackwellpublishing.com). Figure IX on page38, figure XB on page 41, figure XI on page 46 and figure XII on page 47 are all published in the Journal of Reproductive Immunology and republished with kind permisson from Elsevier (http://www.elsevier.com/) in the Ph.D. thesis.
85

Leukocytes in Angiogenesis : Learning from Transplanted Pancreatic Islets

Christoffersson, Gustaf January 2013 (has links)
Angiogenesis, the growth of new blood vessels, is a complex process involving several cell types and molecular signals. Excessive vascular growth is a problem in tumors, and insufficient vascularization hampers the function of transplanted insulin-producing pancreatic islets. Understanding the mechanisms behind blood vessel growth generates increased means to control angiogenesis. In this thesis a model of pancreatic islet transplantation to muscle has been used to study the involvement of leukocytes in the development of new vasculature. Transplantation of isolated islets of Langerhans into mouse muscle promoted revascularization of the grafts to a level comparable to native islets in the pancreas. The complete and functional vascular restoration resulted in improved blood glucose control compared to the clinical standard implantation site, the liver. This proved muscle as a transplantation site to be a clinically relevant option for the treatment of type 1 diabetes. The rapid islet revascularization process was found to be dependent on a distinct subset of neutrophils characterized by high expression of the chemokine receptor CXCR4 and the enzyme matrix metalloproteinase 9 (MMP-9). These cells were recruited to recently transplanted and hypoxic grafts by islet-secreted vascular endothelial growth factor A (VEGF-A). Leukocyte migration and interactions in the engraftment area were monitored using a high-speed confocal microscope followed by software tracking. New software was developed to visualize migration statistics. This tool revealed areas around the islet graft where neutrophil gathering coincided with sites of angiogenesis. Macrophages in the engraftment area positioned themselves close to the newly formed vasculature and were shown to have a stabilizing effect on the vessels. When macrophages were removed, no pericytes were recruited to the forming vasculature. The perivascular macrophages also began to express a pericyte marker when in the graft, suggesting a close relationship between these cell types or macrophage plasticity. In conclusion, this thesis presents muscle as a proangiogenic transplantation site for pancreatic islets for the treatment of type 1 diabetes, where the revascularization of the grafts was dependent on the recruitment and actions of specialized immune cells.
86

Distribution and frequency of myeloid and t cell populations in the small intestine of newborn and weaned calves

07 1900 (has links)
The development of mucosal dendritic cells (DCs) in cattle is poorly understood and an analysis of myeloid cells in the bovine small intestine is required to increase our knowledge in this area. The phenotype, frequency and distribution of mucosal myeloid and lymphoid lamina propria leukocytes (LPL) and intraepithelial leukocytes (IEL) in the ileum and jejunum of newborn calves (3-5 weeks old) were analyzed using flow cytometry and immunohistochemistry (IHC). LPL and IEL were isolated through the use of chemical and enzymatic incubations. Costaining with a CD45-specific monoclonal antibody allowed us to exclude all non-leukocytic cells from our analysis of IEL and LPL. The morphology of CD45+CD11c+MHC Class II+ cells isolated from the lamina propria (LP) of ileum and jejunum showed myeloid characteristics, validating the use of CD11c and MHC Class II co-expression to identify myeloid cells. Regional differences in the frequency and number of leukocytes isolated from the IEL and LP compartments of the ileum and jejunum were analyzed in newborn calves. The CD11cHiCD14+ and CD335+ NK cell populations were significantly more abundant in the ileum than the jejunum. IHC was then used to identify the distribution of myeloid cells within the intestine. This analysis confirmed the presence of a variety of myeloid cell populations within the LP. Furthermore, CD11c+ cells were uniquely distributed within the jejunal, but not the ileal IEL compartment. In contrast, CD11b+ cells were present in the ileal, but absent from the jejunal, IEL compartment. A comparison of myeloid cell populations isolated from jejunum and blood dentified distinct mucosal DC populations, such as CD11c+CD13+ cells, which were present in he jejunum but absent from blood. The phenotype, frequency and distribution of IEL and LPL in the ileum and jejunum of weaned calves (6 months old) were then investigated. Significant regional differences were observed when comparing mucosal T cell populations with CD8+ and γδ T cells more abundant in the ileum and CD4+ T cells more abundant in the jejunum. Proportionally, there were no significant differences between the frequency and number of myeloid populations in the two regions. IHC was, once again, used to confirm these unique distributions of cells within each region. CD11b+ cells were present in the LP of both the ileum and jejunum, although a small number of CD11b+ cells were found in the ileal epithelium. CD4+ T cells were restricted to the LP, while CD8+ and γδ T cells were restricted to the IEL compartment. Significant age-related changes were observed when comparing mucosal leukocyte populations in the ileum and jejunum of newborn and 6 month old calves. In the ileum there was an age-related enrichment of CD8+ and γδ T cells, while in the jejunum there was enrichment in CD4+ and CD8+ T cells. In contrast, total myeloid (CD11c+MHC Class II+) cells number remained unchanged but there was a significant age-related enrichment of DC subpopulations (CD13, CD26, CD205). In conclusion, the ileum and jejunum of the newborn calf was populated by diverse myeloid subpopulations, some of which were distinct from myeloid subpopualtions identified in blood. Furthermore, the total number of CD11cHiMHC Class II+ myeloid cells isolated from a 10 cm segment of intestine did not change with age. If neonatal DCs are functionally equivalent to DCs present in weaned calves then the neonatal mucosal immune system appears to have an equivalent capacity to acquire and present antigens acquired from diet, commensal microflora, or pathogens. The one limitation to this conclusion may be the marked difference in the distribution of intraepithelial DC and macrophage distribution when comparing newborn and weaned calves.
87

Characterization of Myometrial Cytokine Expression and Leukocyte Infiltration During Term and Preterm Labour in the Mouse

Nedd-Roderique, Tamara 15 December 2011 (has links)
Studies indicate an association between both term labour (TL) and preterm labour (PTL) and the presence of uterine inflammatory cytokines and leukocyte infiltration. We hypothesized that peripheral leukocytes are recruited to uterine tissues by locally produced cytokines where they contribute to the initiation of TL and PTL. The cytokine expression profile was analyzed using an in vivo mouse model of gestation and two PTL models (Lipopolysaccharide- and RU486-induced). Myometrial neutrophil and macrophage infiltration was also studied. My results demonstrate that macrophage infiltration precedes neutrophil infiltration during late gestation and that both leukocyte subsets increase during PTL and further increase post partum. These changes in leukocyte numbers are associated with significant changes in multiple myometrial cytokines with TL and RU486-induced PTL showing similar cytokine profiles. Importantly, post partum involution, the process by which the uterus completes the reproductive cycle and returns to its pre-pregnant state, appears similar in all three models.
88

Characterization of Myometrial Cytokine Expression and Leukocyte Infiltration During Term and Preterm Labour in the Mouse

Nedd-Roderique, Tamara 15 December 2011 (has links)
Studies indicate an association between both term labour (TL) and preterm labour (PTL) and the presence of uterine inflammatory cytokines and leukocyte infiltration. We hypothesized that peripheral leukocytes are recruited to uterine tissues by locally produced cytokines where they contribute to the initiation of TL and PTL. The cytokine expression profile was analyzed using an in vivo mouse model of gestation and two PTL models (Lipopolysaccharide- and RU486-induced). Myometrial neutrophil and macrophage infiltration was also studied. My results demonstrate that macrophage infiltration precedes neutrophil infiltration during late gestation and that both leukocyte subsets increase during PTL and further increase post partum. These changes in leukocyte numbers are associated with significant changes in multiple myometrial cytokines with TL and RU486-induced PTL showing similar cytokine profiles. Importantly, post partum involution, the process by which the uterus completes the reproductive cycle and returns to its pre-pregnant state, appears similar in all three models.
89

Regulation of phagocytosis and phagolysosome fusion in human leukocytes /

Lindmark, Maria, January 2003 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2003. / Härtill 4 uppsatser.
90

Cellular markers indicating activation of the hemostatic system : studies on platelets and leukocytes in peripheral human blood /

Bunescu, Andreia, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol inst., 2003. / Härtill 5 uppsatser.

Page generated in 0.0254 seconds