Spelling suggestions: "subject:"level tet curmethode"" "subject:"level tet diemethode""
1 |
Locally adaptive speed functions for level set methods in image segmentationRink, Karsten January 2009 (has links)
Zugl.: Magdeburg, Univ., Diss., 2009
|
2 |
Simulation of lifted diesel sprays using a combined level-set flamelet modelVogel, Stefan Emil January 2008 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2008
|
3 |
Rechnergestützte Analyse kardiovaskulärer Strömungen auf Basis der MagnetresonanztomographieUnterhinninghofen, Roland January 2008 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2008 / Hergestellt on demand. - Auch im Internet unter der Adresse http://uvka.ubka.uni-karlsruhe.de/shop/isbn/978-3-86644-260-3 verfügbar
|
4 |
Direct surface extraction from unstructured point based volume dataRosenthal, Paul January 2009 (has links)
Zugl.: Bremen, Univ., Diss., 2009
|
5 |
A level set based flamelet model for the prediction of combustion in homogeneous charge and direct injection spark ignition engines /Ewald, Jens. January 2006 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2006.
|
6 |
Verfolgung fluiddynamischer Diskontinuitäten mittels Level-Set-FunktionVölker, Frank. Unknown Date (has links) (PDF)
Essen, Universiẗat, Diss., 2005--Duisburg.
|
7 |
Optimal Control of the Classical Two-Phase Stefan Problem in Level Set FormulationBernauer, Martin K., Herzog, Roland 02 November 2010 (has links) (PDF)
Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.
|
8 |
Wave interactions with material interfaces /Andreae, Sigrid Barbara Margrid. January 2008 (has links)
Techn. Hochsch., Diss.--Aachen, 2007.
|
9 |
On variational methods and gradient flows in image processingDroske, Marc. Unknown Date (has links) (PDF)
Essen, University, Diss., 2005--Duisburg.
|
10 |
Optimal Control of the Classical Two-Phase Stefan Problem in Level Set FormulationBernauer, Martin K., Herzog, Roland January 2010 (has links)
Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.:1 Introduction
2 Model Equations
3 The Optimal Control Problem and Optimality Conditions
4 Discretization of the Forward and Adjoint Systems
5 Numerical Results
6 Discussion and Conclusion
A Formal Derivation of the Optimality Conditions
B Transport Theorems and Shape Calculus
|
Page generated in 0.039 seconds