101 |
Impact des phénomènes aux interfaces électrode/électrolyte sur les performances des batteries Li-ion haute tension : faiblesses et atouts des électrolytes à base de carbonates d'alkyles et de sulfones face aux électrodes LiNi0,4Mn1,6 O4 et Li4Ti5O12 / Title no availableDemeaux, Julien 08 October 2013 (has links)
Les accumulateurs LiNi0.4Mn1.6O4 (LNMO)/Li4Ti5O12 (LTO), permettent d’atteindre théoriquement les densités de puissance et d’énergie fournissant une autonomie suffisante aux véhicules électriques. Cependant, deux problèmes majeurs liés à LNMO limitent leurs performances : l’oxydation prononcée des électrolytes à base de carbonates d’alkyles et la dissolution d’ions de métaux de transition (Mn2+, Ni2+). Les formulations à base de carbonate d’éthylène (EC) ont une aptitude à former des films polymères couvrant la matière active. Les cyclages galvanostatiques, faisant suite ou non à un stockage, confirment la supériorité de ces électrolytes, conduisant à des pertes de capacité réduites de l’électrode LNMO. D’autre part, les sulfones sont des composés prometteurs pour une utilisation dans les batteries LNMO/LTO. L’emploi de cellules symétriques et asymétriques démontre que les sulfones sont non-réactives vis-à-vis des interfaces LNMO/électrolyte et LTO/électrolyte. Cependant, cette non-réactivité ne permet pas le dépôt de films polymères qui auraient permis de stopper la dissolution d’ions Mn2+ et Ni2+ à partir de l’électrode positive. Ceci résulte en des performances dégradées à 30°C des accumulateurs par rapport à ceux employant EC dans les électrolytes. / LiNi0.4Mn1.6O4 (LNMO)/Li4Ti5O12 (LTO) accumulators should theoretically achieve the power and energy densities that provide sufficient autonomy to electric vehicles. However, two major issues related to the use of LNMO limit their performances: the pronounced oxidation of the alkylcarbonate-based electrolytes and the transition metal ion (Mn2+, Ni2+) dissolution. The ethylene carbonate (EC)-based formulations get an ability to form polymer-covering films onto the active material. The galvanostatic cycling tests, after storage or not, confirm the superiority of these electrolytes, leading to reduced capacity losses of the LNMO electrode. Furthermore, sulfones are promising compounds to be applied to LNMO/LTO batteries. The use of symmetric and asymmetric cells demonstrates that sulfones are non-reactive towards the LNMO/electrolyte and LTO/electrolyte interfaces. However, this non-reactivity does not allow the deposition of polymer films, which would have enabled to stop the Mn2+ and Ni2+ dissolution from the positive electrode. This results in degraded performances of batteries at 30°C compared to those using EC in electrolytes.
|
102 |
Integrated design and control optimization of hybrid electric marine propulsion systems based on battery performance degradation modelChen, Li 13 September 2019 (has links)
This dissertation focuses on the introduction and development of an integrated model-based design and optimization platform to solve the optimal design and optimal control, or hardware and software co-design, problem for hybrid electric propulsion systems. Specifically, the hybrid and plug-in hybrid electric powertrain systems with diesel and natural gas (NG) fueled compression ignition (CI) engines and large Li-ion battery energy storage system (ESS) for propelling a hybrid electric marine vessel are investigated. The combined design and control optimization of the hybrid propulsion system is formulated as a bi-level, nested optimization problem. The lower-level optimization applies dynamic programming (DP) to ensure optimal energy management for each feasible powertrain system design, and the upper-level global optimization aims at identifying the optimal sizes of key powertrain components for the powertrain system with optimized control.
Recently, Li-ion batteries became a promising ESS technology for electrified transportation applications. However, these costly Li-ion battery ESSs contribute to a large portion of the powertrain electrification and hybridization costs and suffer a much shorter lifetime compared to other key powertrain components. Different battery performance modelling methods are reviewed to identify the appropriate degradation prediction approach. Using this approach and a large set of experimental data, the performance degradation and life prediction model of LiFePO4 type battery has been developed and validated. This model serves as the foundation for determining the optimal size of battery ESS and for optimal energy management in powertrain system control to achieve balanced reduction of fuel consumption and the extension of battery lifetime.
In modelling and design of different hybrid electric marine propulsion systems, the life cycle cost (LCC) model of the cleaner, hybrid propulsion systems is introduced, considering the investment, replacement and operational costs of their major contributors. The costs of liquefied NG (LNG), diesel and electricity in the LCC model are collected from various sources, with a focus on present industrial price in British Columbia, Canada. The greenhouse gas (GHG) and criteria air pollutant (CAP) emissions from traditional diesel and cleaner NG-fueled engines with conventional and optimized hybrid electric powertrains are also evaluated.
To solve the computational expensive nested optimization problem, a surrogate model-based (or metamodel-based) global optimization method is used. This advanced global optimization search algorithm uses the optimized Latin hypercube sampling (OLHS) to form the Kriging model and uses expected improvement (EI) online sampling criterion to refine the model to guide the search of global optimum through a much-reduced number of sample data points from the computationally intensive objective function. Solutions from the combined hybrid propulsion system design and control optimization are presented and discussed.
This research has further improved the methodology of model-based design and optimization of hybrid electric marine propulsion systems to solve complicated co-design problems through more efficient approaches, and demonstrated the feasibility and benefits of the new methods through their applications to tugboat propulsion system design and control developments. The resulting hybrid propulsion system with NG engine and Li-ion battery ESS presents a more economical and environmentally friendly propulsion system design of the tugboat.
This research has further improved the methodology of model-based design and optimization of hybrid electric marine propulsion systems to solve complicated co-design problems through more efficient approaches, and demonstrated the feasibility and benefits of the new methods through their applications to tugboat propulsion system design and control developments. Other main contributions include incorporating the battery performance degradation model to the powertrain size optimization and optimal energy management; performing a systematic design and optimization considering LCC of diesel and NG engines in the hybrid electric powertrains; and developing an effective method for the computational intensive powertrain co-design problem. / Graduate
|
103 |
Etudes des phénomènes thermiques dans les batteries Li-ion. / Study of thermal phenomena in Li-ion batteriesHémery, Charles-Victor 12 November 2013 (has links)
Les travaux présentés dans cette thèse concernent l'étude thermique des batteries Li-ion en vue d'une application de gestion thermique pour l'automobile. La compréhension des phénomènes thermiques à l'échelle accumulateur est indispensable avant de réaliser une approche de type module ou pack batterie. Ces phénomènes thermiques sont mis en évidence à partir d'une modélisation thermique globale de deux accumulateurs de différentes chimies, en décharge à courant constant. La complexité du caractère résistif de l'accumulateur Li-ion a mené au développement d'un modèle prenant en compte l'interaction entre les phénomènes électrochimiques et thermiques, permettant une approche prédictive de son comportement. Enfin la réalisation de deux boucles expérimentales, de simulation de systèmes de gestion thermique d'un module de batterie, montre les limites d'un refroidissement classique par air à respecter les critères de management thermique. En comparaison, le second système basé sur l'intégration innovante d'un matériau à changement de phase (MCP) se montre performant lors de situations usuelles, de défauts ou encore lors du besoin d'une charge rapide de la batterie. / This work relates to the thermal study of Li-ion batteries in order to develop an optimized battery thermal management system. The understanding of thermal phenomena at cell scale is essential before to undertake an approach of the battery module or pack. Galvanostatic discharges of two kind of Li ion cells are modeled to highlight thermal phenomena. The complexity of the resistive behavior of Li-ion cell led to the development of an electrochemical-thermal coupled model to get a predictive approach. Then, two experimental tests benches were designed so as to compare two battery thermal management systems (BTMS). Restrictions of air cooling highlight its disability to achieve thermal management criteria. Innovative integration of a phase change material (PCM) was then tested under several uses of the battery module. This new BTMS showed really promising performances during intensive driving cycles, failure tests, and when a fast charge is needed.
|
104 |
A Few Case Studies of Polymer Conductors for Lithium-based BatteriesSen, Sudeshna January 2016 (has links) (PDF)
The present thesis demonstrates and discusses polymeric ion and mixed ion-electron conductors for rechargeable batteries based on lithium viz. lithium-ion and lithium-sulphur batteries. The proposed polymer ion conductors in the thesis are discussed primarily as potential alternatives to conventional liquid and solid-crystalline electrolytes in lithium-ion batteries. These discussions are part of Chapters 2-4. On the other hand, the polymer based mixed ion-electron conductor is demonstrated as a novel electrode for lithium-Sulphur battery in Chapter 5. Possibility of application of polymer ion conductors is discussed in the context of Li-S battery in Chapter 6. A distinct correlation between the physical properties and electrochemical performance of the proposed conductors is highlighted in detail in this thesis. Systematic investigation of the ion transport mechanism in the polymeric ion conductors has been carried out using various spectroscopic techniques at different time and length scales. Such detailed investigations demonstrate the key structural and physical parameters for design of alternative polymer conductors for rechargeable batteries. Though the thesis discusses the various polymeric conductors in the context of lithium-based batteries, it is strongly felt that the design strategies are equally likely to be beneficial for different battery chemistries as well as for other electrochemical generation and storage devices. A brief discussion of the contents and highlights of the individual chapters are described below:
The thesis comprises of six Chapters.
Chapter 1 briefly reviews the important developments and materials of lithium-based batteries, with specific focus on Li-ion and Li-S batteries. It starts with discussions on different types of liquid, solid crystalline and solid-like electrolytes. Their materials characteristics, advantages and disadvantages are discussed in the context of secondary batteries such as lithium-ion and lithium-sulphur batteries. As prospective alternative electrolytes polymer based soft matter electrolytes are discussed in detail. Special emphasis is given to the recent developments in polymer electrolytes and their ion conduction mechanism, which are central themes to this thesis. The importance of investigation of charge transport, typically ion, on electrochemical processes is also briefly discussed in Chapter 1. A brief discussion about the characteristics, materials and non-trivialities of the electrochemical storage process in Li-S battery is also reviewed.
Chapter 2A demonstrates a binary polymer physical network based gel (PN-x) electrolyte, comprising of an ionic liquid confined inside a binary polymer system for electrochemical devices such as secondary batteries. The synthesis, physical property and electrochemical performances are studied as a function of content of one of the polymers in this Chapter. A physical network of two polymers with different functional groups leads to multiple interesting consequences. The polymer physical network characteristics determine all physical properties including electrochemical property of the ionic liquid integrated PN based GPE. The conductivities of the proposed gel are nearly an order in magnitude higher than the unconfined ionic liquid electrolyte and displays good dimensional stability and electrochemical performance in a separator-free battery configuration. The ac-impedance spectroscopy, steady shear viscosity measurement, dynamic rheology are employed to study physical properties of the proposed gel polymer electrolyte.
Chapter 2B discusses the detailed investigations of the ion transport mechanism of the gel polymer electrolyte, as discussed in Chapter 2A. Ion conduction mechanism is investigated in the light of ion diffusion and solvent dynamics of the entrapped ionic liquid inside the polymer. The studies reveal a heavy influence of network characteristics on the ion conduction mechanism. The influence of solvent dynamics on the ion transport is drastically altered by polymer physical network. Consequently, a drastic change in the ion mobility and nature of predominant charge carrier is observed in the polymer physical network based gel electrolyte. A clear transformation from dual ion conductivity to a predominantly anion conductivity is observed on going from single polymer to a dual polymer network. The spectroscopic tools such as pulsed field gradient nuclear magnetic resonance (PFG–NMR), Brillouin light scattering spectroscopy, ac-impedance spectroscopy, FT-Raman and FTIR spectroscopy were used to elucidate the ion transport mechanism in the Chapter.
Chapter 3 demonstrates a simple design strategy of gel polymer electrolyte comprising of a lithium salt (lithium bis(trifluoromethanesulfonyl) imide, LiTFSI) solvated by two plastic crystalline solvents, one a solid (succinonitrile, abbreviated as SN) and another a (room temperature) ionic liquid (1-butyl-1-methyl-pyrrolidinium bis(trifluoromethane sulfonyl) imide, (abbreviated as IL) confined inside a linear network of poly(methyl methacrylate) (PMMA). The concentration of the IL component determines the physical properties of the unconfined electrolyte and when confined inside the polymer network in gel polymer electrolyte. Intrinsic dynamics of one plastic crystal influences the conduction mechanism of gel polymer electrolytes. The enhanced disordering in the plastic phase of succinonitrile by IL doping alters both the local ion environment and viscosity. The proposed plastic crystal electrolytes show predominantly anion conduction (tTFSI ≈ 0.5) however, lithium transference number (tLi ≈ 0.2) is nearly an order higher than the ionic liquid electrolyte (IL-LiTFSI) (tLi ≈ 0.02-0.06), discussed in Chapter 2. The gel polymer electrolyte displayed high mechanical compliability, stable Li-electrode | electrolyte interface, low rate of Al corrosion and stable cyclability. The promising electrochemical performance further justifies simple strategy of employing mixed physical state plasticizers to tune the physical properties of polymer electrolytes requisite for application in rechargeable batteries.
Chapter 4A proposes a novel liquid dendrimer–based single ion conducting liquid electrolyte as potential alternative to conventional molecular liquid solvent–salt solutions and conventional solid polymer electrolytes for rechargeable batteries, sensors and actuators. The physical properties are investigated as a function of peripheral functionalities in the first generation poly(propyl ether imine) (G1-PETIM)–lithium salt complexes. The change in peripheral group simultaneously affects the effective physical properties viz. viscosity, ionic conductivity, ion diffusion coefficients, transference numbers and also the electrochemical response. The specific change from ester (–COOR) to cyano (–CN) terminated peripheral group resulted in a remarkable switch over from a high cation (tLi+ = 0.9 for –COOR) to a high anion (tPF6- = 0.8 for –CN) transference number.
Chapter 4B presents an analysis of the frequency dependent ionic conductivity of single ion dendrimer conductors by using time temperature scaling principles (TTSPs) and dielectric modeling of the electrode polarization. The TTSP provides information on the salt dissociation and number density of mobile charges and hence provides direct insights into the ion conduction mechanism. Summerfield and Baranovskii–Cordes scaling laws, which are well known TTSPs, have been applied to analyze the ion conductivity. The electrode polarization, which quantifies the number density of mobile charges and ionic mobility, is studied using Macdonald-Coelho model of electrode polarization. The combination of these two theoretical investigations of the experimental data emanating from one technique i.e. ac– impedance spectroscopy, predicts independently the contributions of the effect of mobile ion charges and ionic mobility to ion conduction mechanism.
In Chapter 5 focus shifts from polymer ion conductors to polymer mixed ion-electron conductor. The polymer mixed ion-electron conductor is demonstrated as a novel electrode material for Li-S battery. A simple strategy to overcome the challenges towards practical realization of a stable high performance Li–S battery is discussed. A soft mixed conducting polymeric network is utilized to configure sulphur nanoparticle. The soft matter network provides efficient and distinct pathways for lithium and electron conduction simultaneously. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li–S batteries. The S-MIEC is characterized by several methods: powder-X-ray diffraction (PXRD), thermo gravimetric analysis (TGA), fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), ac-impedance spectroscopy and dc current-voltage measurements are performed to evaluate conductivity of S-MIEC cathode. Electrochemical studies such as cyclic voltammetry, galvanostatic charge-discharge cycling, galvanostatic intermittent titration (GITT) are performed to demonstrate feasibility of S-MIEC in the Li–S battery performance.
Chapter 6 provides a brief summary of the work carried out as part of this thesis and also demonstrates the future perspective of the present work. Potential of the polymer physical network based gel polymer electrolytes, which are discussed in Chapter 2A-B for lithium-ion batteries, are demonstrated in Li-S battery. The proposed polymer physical network confines higher order lithium polysulfides (typically Li2S8) dissolved in tetraethylene glycol dimethyl ether (TEGDME) based electrolyte (TEGDME-1M LiTFSI). The three dimensional polymer network is proposed to be formed by physical blending of the poly(acrylonitrile) (PAN) with the copolymer of AN and poly(ethylene glycol) methyl ether methacrylate (PEGMA), [ P(AN–co–PEGMA)]. We extend here the similar synthetic approaches as described in Chapter 2A. The approach proposed and demonstrated in this concluding Chapter is expected to mitigate some of the major issues of Li-S chemistry. The proposed Li2S8 confined gel electrolyte exhibits moderately high values of ionic conductivity, 2 × 10-3 Ω-1cm-1 and shows a stable capacity of 350 mAhg-1 over 30 days in a separator free Li-S battery.
|
105 |
Electrocatalytic Studies Using Layered Transition Metal Thiphosphates, Metal Chalcogenides and PolymersMukherjee, Debdyuti January 2017 (has links) (PDF)
The ever increasing demand for energy due to over consumption of non-renewable fossil fuels has emphasized the need for alternate, sustainable and efficient energy conversion and storage systems. In this direction, electrochemical energy conversion and storage systems involving various fundamental electrochemical redox processes such as hydrogen evolution (HER), oxygen reduction (ORR), oxygen evolution (OER), hydrogen oxidation (HOR) reactions and others become highly important. Electrocatalysts are often used to accelerate the kinetics of these reactions. Platinum (Pt), ruthenium oxide and iridium oxide (RuO2 and IrO2) are known to be the state of the art catalysts for several of these reactions due to favouarable density of states (DOS) near the Fermi level, binding energy with the reactant species, chemical inertness etc. Apart from HER, OER and ORR, chlorine evolution reaction (Cl-ER) is another industrially important reaction associated with water purification, disinfection, bleaching, chemical weapons and pharmaceuticals. Dimensionally stable anodes (RuO2/IrO2 mixed with TiO2 on Ti) are the most commonly used catalysts for this process. Issues related to surface poisoning, corrosion and cost of the catalysts, in addition to selectivity and specificity towards a particular reaction are various aspects to be addressed. For example, Pt is not very specific for ORR in presence of methanol in addition to high cost and corrosion in certain media. On the other hand, DSA can efficiently catalyze both OER and Cl-ER, and hence there is overlap of the two processes in the potential range available. There is an on going search for efficient, cost-effective, stable catalysts that possess high specificity for a particular redox reaction. Towards this goal, the present study explores certain layered (phospho)chalcogenides for catalyzing HER, ORR, OER and Cl-ER.
The present thesis is structured in two parts, where the first part explores the multi-functional catalytic aspects of new classes of compounds based on layered transition metal mixed chalcogenides (MoS2(1-x)Se2x) and ternary phosphochalcogenides (FePS3, FePSe3 and MoPS). In addition, lithium insertion and desinsertion has been studied with the aim of using the layered materials for rechargeable batteries. The second part of the thesis explores organic electrode materials with active carbonyl groups such as rufigallol, polydihydroxyanthrachene succinic anhydride (PDASA) as battery electrodes. Additionally, covalently functionalized transition metal phthalocyanines with reduced graphene oxide are studied as counter electrodes in dye sensitized solar cells (DSSCs).
MoS2(1-x)Se2x (x = 0 to 1) compositions are solid solutions of MoS2 and MoSe2 in different ratios. They crystallize in hexagonal structure with space group P63/mmc (D6h4) having Mo in trigonal prismatic coordination like the pristine counterparts. X-Ray diffraction studies reveal that Vegard’s law (figure 1a) is followed and hence complete miscibility of MoS2 and MoSe2 is established. MoS2(1-x)Se2x (x = 0 to 1) are layered in nature and the layers are held together by long range, weak van der Waal’s forces. This gives us the flexibility of exfoliation to produce corresponding few-layer materials (figure 1b).
Figure 1. (a) Variation of lattice parameter corresponding to (002) reflection of MoS2(1-x)Se2x with different x values. (b) Scanning electron micrograph of few-layer MoS2(1-x)Se2x (x = 0.5).
The electrocatalytic activity of the few-layer sulphoselenides have been studied towards HER in aqueous 0.5 M H2SO4 and towards Cl-ER in 3 M aqueous NaCl (pH = 3) solution. The mixed chalcogenides exhibit very good activities for both HER and Cl-ER as compared to the activity of their pristine counter parts (i.e. MoS2 and MoSe2) (figures 2a and 2b). Electrocatalytic activity on different compositions reveal that MoS1.0Se1.0 exhibits the maximum activity. Additionally, it has been observed that MoS1.0Se1.0 shows high specificity for Cl-ER with negligible interference of OER.
Figure 2. Voltammetric data for (a) hydrogen evolution reaction (in 0.5 M aqueous H2SO4) and (b) chlorine evolution reaction (in 3 M aqueous NaCl solution, pH = 3) on MoS2(1-x)Se2x (x = 0, 0.5, 1).
Figure 3. (a) XRD pattern of MoS2(1-x)Se2x (x = 0.5) electrode after a cycle of Li insersion and deinsersion (red) along with as-synthesized material (black) (b) Cycling behaviour of rGO supported (black) and pristine (red) MoS2(1-x)Se2x (x = 0.5) as electrode in rechargeable lithium-ion battery.
The equiatomic MoS1.0Se1.0 has also been studied as an anode material for rechargeable lithium batteries. The cyclic voltammogram and characterization after charge-discharge cycle (figure 3a) indicate intercalation of Li with in the layers followed by
conversion type formation of Li-S and Li-Se type compounds. The pristine material shows continuous capacity fading while the composites of sulphoselenides functionalized with conducting carbon supports such as rGO, MWCNT, super P carbon, toray carbon show marked improvement in capacity as well as cycling behavior. The rGO functionalized MoS1.0Se1.0 reveals ~1000 mAh/g of stable specific discharge capacity for 500 cycles (figure 3b).
In the next two chapters, new class of transition metal-based layered materials FePS3 and FePSe3, containing both P and chalcogen (S and Se) is indroduced for electrocatalysis. FePS3 crystallizes in monoclinic symmetry with an indirect band gap of ~1.55 eV while FePSe3 possesses rhombohedral crystal structure with comparatively low band gap (~1.3 eV) as shown in figure 4a. The FePS3 and FePSe3 have been exfoliated as has been done for MoS1.0Se1.0 (liquid exfoliation method) using acetone as the solvent. Stable colloids with few-layer nanosheets having lamellar morphology and lateral sizes of ~100 to 200 nm are obtained. Electrical characterization indicates that they are semiconducting and the conductivity of the Se analogue is ~50 times higher than that of the S analogue (figure 4b).
Figure 4. (a) Catholuminescence of FePX3 ( X = S and Se) reveals the band gap of the material. Band gap of the S analogue is 1.52 eV and that of the Se analogue is 1.33 eV (b) Resistivity of FePX3 ( X = S and Se) as a function of temperature.
The tri-functional electrocatalytic activities on rGO-few layer FePX3 (X = S and Se) have been evaluated for HER over a wide pH range (0.5 M H2SO4, 0.5 M KOH, phosphate
Figure 5. Catalytic activity of rGO-few-layer FePX3 (X = S, Se) towards HER in (a) aqueous 0.5 M H2SO4 and (b) 3.5 wt % NaCl solutions. (c) ORR activity of the catalysts in oxygen saturated 0.5 M KOH (d) OER behaviour on the catalysts in 0.5 M KOH at a rotation speed of 1600 rpm. buffer, pH 7 and 3.5 % NaCl), ORR and OER in alkaline media (0.5 M KOH). The studies clearly reveal that both rGO-FePS3 and rGO-FePSe3 exhibit excellent HER activity in acidic media (figure 5a) with high stability. The HER studies in 3.5 wt % aqueous NaCl solution (figure 5b) suggests that the catalysts are effective in evolving hydrogen from sea-water environment. Studies on ORR activity (figure 5c) indicate that the rGO composites of both S and Se analogues follow 4-electron pathways to produce water as the final product. They are also found to be highly methanol tolerant. In the case of OER (figure 5d), XPS characterization of the electrodes after the voltammetric studies reveals the presence of very thin layer of Fe2O3 (not detectable by XRD). All the three reactions (HER, ORR and OER) catalyzed by the Se analogue are better than the S analogue (figure 5). This could be due to the low band gap and high conductivity of FePSe3 as compared to FePS3. The over potential to achieve 10 mAcm-2 current density is ~108 mV for rGO-few-layer FePS3 catalyst where in the case of rGO-few layer FePSe3, it is ~97 mV (table 1).
Table 1. Catalytic activities of rGO-few layer FePS3 and rGO-few layer FePSe3 towards HER, ORR and OER.
Reaction studied rGO-FePS3 rGO-FePSe3
HER (η @ 10mAcm-2) ~108 mV ~97 mV
ORR (peak potential) ~0.81 V ~0.87 V
OER (η @ 10mAcm-2) ~470 mV ~430 mV
It is likely that there is a strong interaction between FePX3 (metal d-orbital) and rGO, as observed from the downward shift of Fe 2p peak in high resolution XPS studies. This interaction may extend the density of states of metal d-orbitals thereby improving the catalytic activities.
The next chapter deals with molybdenum-based phosphosulphide compound (MoPS). Molybdenum-based phosphide catalysts have been explored recently as excellent catalysts for various electrochemical reactions such as HER. It is expected that the catalyst containing both S and P will show positive effects on catalytic activities due to the synergy between S and P. In the present study, P incorporated MoS2 is studied towards HER. The XRD pattern of the as-synthesized crystal suggests the presence of mixed phase of MoS2, MoP2 and MoP while the elemental mapping in microscopy indicates the ratio of Mo, P and S to be 1:1:1. The electrochemical HER in 0.5 M H2SO4 indicates that the activity is improved drastically as compared to bulk and few-layer MoS2.
The next section explores the use of different organic electrode materials possessing active carbonyl groups for Li-storage studies. The advantage of the use of carbonyl-based compounds lies in the high reversible activity towards Li ion insersion and de-insersion. Rufigallol (figure 6a) exhibits very stable capacity of ~200 mAh/g (at C/20 rate) upto 500
Figure 6. (a) and (c) Schematic representation of rufigallol and poly-dihydroanthracene succinic anhydride (PDASA) respectively. (b) and (d) Cyclic behaviour of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) in Li-storage devices. (e) and (f) represent the coulombic efficiency of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) as a function of number of cycles.
cycles along (figure 6b) and with very good rate capability. A triptycene-based mesoporous polymer, PDASA (figure 6c) is introduced and explored as efficient electrode material for Li-storage. PDASA exhibits very high capacity of ~1000 mAh/g at a current rate of 50 mA/g upto 1000 cycles (figure 6d). Even at very high current rates (3A/g) excellent cyclability is observed. The mechanistic details of lithium uptake and release are studied using various spectroscopic techniques. In both the cases the coulombic efficiency observed is ~80 to 90 % (figures 6e and f).
Figure 7. (a) Digital photograph of the dye sensitized solar cell with rGO-Co-TAPc counter electrode. (b) Photoconversion efficiency of DSSCs with different counter electrodes as mentioned in the figure. (c) Photo conversion efficiency of Pt and rGO-Co-TAPc based DSSCs as function of storage time. (d) Schematic illustration of DSSC wherein the energy level of the counter electrodes and electrolyte are shown for different M-TAPcs.
In a slightly different direction, metal phthalocyanine - rGO composites (rGO-M-TAPc; M = Co, Zn, Fe) have been explored as counter electrodes in DSSC. Figure 7a depicts the digital image of a DSSC constructed using rGO-Co-TAPc as the counter electrode. It has been observed that rGO-cobalt tetraamino phthalocyanine (rGO-Co-TAPc) counter electrode exhibits ~6.6 % of solar conversion efficiency (figure 7b) and is close to that of standard DSSC (Pt counter electrode) under identical experimental conditions and are highly stable (figure 7c). Other metal phthalocyanines show less efficiency and is analysed based on the relative positions of HOMO energy levels of the materials and the energy level of the redox system (I-/I3- system) as given in figure 7d.
The thesis contains eight chapters on aspects discussed above along with summary and future perspectives given at the end. It is devided into various chapters in two sections, one comprising inorganic chalcogenide-based electrocatalysts and another comprising organic electrode materials. Appendix I discusses the Na-storage behaviour of MoS1.0Se1.0 and appendix II describes the Li-storage behaviour of rGO functionalized benzoquinone and diamino anthraquinone electrode materials.
|
106 |
Investigations On Electrodes And Electrolyte Layers For Thin Film BatteryNimisha, C S 05 1900 (has links) (PDF)
The magnificent development of on-board solutions for electronics has resulted in the race towards scaling down of autonomous micro-power sources. In order to maintain the reliability of miniaturized devices and to reduce the power dissipation in high density memories like CMOS RAM, localized power for such systems is highly desirable. Therefore these micro-power sources need to be integrated in to the electronic chip level, which paved the way for the research and development of rechargeable thin film batteries (TFB). A Thin film battery is defined as a solid-state electrochemical source fabricated on the same scale as and using the same type of processing techniques used in microelectronics.
Various aspects of deposition and characterization of LiCoO2/LiPON/Sn thin film battery are investigated in this thesis. Prior to the fabrication of thin film battery, individual thin film layers of cathode-LiCoO2, electrolyte-LiPON and anode-Sn were optimized separately for their best electrochemical performance. Studies performed on cathode layer include theoretical and experimental aspects of deposition of electrochemically active LiCoO2 thin films. Mathematical simulation and experimental validation of process kinetics involved in sputtering of a LiCoO2 compound target have been performed to analyze the effect of process kinetics on film stoichiometry. Studies on the conditioning of a new LiCoO2 sputtering target for various durations of pre-sputtering time were performed with the help of real time monitoring of glow discharge plasma by OES and also by analysing surface composition, and morphology of the deposited films. Films deposited from a conditioned target, under suitable deposition conditions were electrochemically tested for CV and charge/discharge, which showed an initial discharge capacity of 64 µAh/cm2/µm.
Studies done on the deposition and characterization of solid electrolyte layer-LiPON have shown that, sputtering from powder target can be useful for certain compounds like Li3PO4 in which breaking of ceramic target and loss of material are severe problems. An ionic conductivity of 1.1 x10-6 S/cm was obtained for an Nt/Nd ratio of 1.42 for a RF power density of 3 W/cm2 and N2 flow of 30 sccm. Also the reasons for reduction in ionic conductivity of LiPON thin films on exposure to air have been analyzed by means of change in surface morphology and surface chemistry. Ionic conductivity of 2.8 x10-6 S/cm for the freshly deposited film has dropped down to 9.9 x10-10 S/cm due to the reaction with moisture, oxygen and carbon content of exposed air.
Interest towards a Li-free thin film battery has prompted to choose Sn as the anode layer due to its relatively good electrochemical capacity compared with other metallic thin films and ease of processing. By controlling the rate of deposition of Sn, thin films of different surface morphology, roughness and crystallinity can be obtained with different electrochemical performance. The reasons for excessive volume changes during lithiation/delithiation of a porous Sn thin film have been analyzed with the aid of physicochemical characterization techniques. The results suggest that the films become progressively pulverized resulting in increased roughness with an increase in lithiation. Electrochemical impedance data suggest that the kinetics of charging becomes sluggish with an increase in the quantity of Li in Sn-Li alloy.
Thin film batteries with configuraion LiCoO2/LiPON/Sn were fabricated by sequential sputter deposition on to Pt/Si substartes. Pt/Cu strips were used as the current collector leads with a polymer packaging. Electrochemical charge/discharge studies revealed discharge capacities in the range 6-15 µAh/cm2/µm with hundreds of repeated cycles. TFB with a higher capacity of 35 µAh/cm2/µm suffered capacity fade out after 7 cycles, for which reasons were analyzed. The surface and cross-sectional micrographs of cycled TFB showed formation of bubble like features on anode layer reducing integrity of electrolyte-anode interface. The irreversible Li insertion along with apparent surface morphology changes are most likely the main reasons for the capacity fade of the LiCoO2/LiPON/Sn TFB.
|
107 |
Zálohovaný napájecí zdroj pro lékařský přístroj s managementem po I2C / Uninterruptible power supply with management system utilizing I2C bus for medical devicesDaněček, Vít January 2008 (has links)
Object my master’s thesis is the design a Medical device uninterruptible power supply with managment system utilizing I2C bus. Norm EN 61000-3-2 define electric parameters for medical device power supply. In case of power supply for medial equipment is expressive accent on increased electric strength. This power supply have usually primary and secondary power circuit. Primary power circuit form line accumulator, which supplies needed output to the load and recharge reserve battery. Secondary is formed battery-pack, which serve as back-up power supply at drop-out prime circle. They have a minimum weight, small proportions, large overall effectivity also charging battery-pack and monitoring battery-pack charging condition. Result whole those master’s thesis is design Medical device uninterruptible power supply with managment system utilizing I2C bus and realization board layout. Resulting characteristics designed supply unit are: Output voltages are 5V/ 3 A , 12V/ 1,5 A and -12V/ 0,1 A. Managment support information about: Line adapter/ battery pack switch, battery-pack charging condition and actuall tempera-ture battery-pack.
|
108 |
Bezdrátové zabezpečovací zařízení / Wireless security deviceNejedlý, Tomáš January 2010 (has links)
This project deals with design and study wireless security device. This device works in ISM band, created by two modules handling secure subject. Microprocessor AVR from company Atmel provides communication between these modules.
|
109 |
Phase Dynamics and Physico-Mechanical Behaviors of Electronic Materials: Atomistic Modeling and Theoretical StudiesHong Sun (9500594) 16 December 2020 (has links)
<p></p><p>Global demand for high performance, low cost, and eco-friendly
electronics is ever increasing. Ion/charge transport ability and mechanical
adaptability constitute two critical performance metrics of battery and
semiconductor materials, which are fundamentally correlated with their
structural dynamics under various operating conditions. It is imperative to
reach the mechanistic understanding of the structure-property relationships of
electronic materials to develop principles of materials design. Nevertheless,
the intricate atomic structure and elusive phase behaviors in the operation of
devices challenge direct experimental observations. Herein, we employ a
spectrum of modeling methods, including quantum chemistry, ab-initio modeling,
and molecular dynamics simulation, to systematically study the phase dynamics
and physico-mechanical behaviors of multiple electronic materials, ranging from
transition-metal cathodes, polymer derived ceramics anodes, to organic
semiconductor crystals. The multiscale atomistic modeling enriches the
fundamental understanding of the electro-chemo-mechanical behaviors of battery
materials, which provides insight on designing state-of-the-art energy
materials with high capacity and high structural stability. By leveraging the
genetic-algorithm refined molecular modeling and phase transformation theory,
we unveil the molecular mechanisms of thermo-, super- and ferroelastic
transition in organic semiconductor crystals, thus promoting new avenues of
adaptive organic electronics by molecular design. Furthermore, the proposed
computational methodologies and theoretical frameworks throughout the thesis
can find use in exploring the phase dynamics in a variety of environmentally
responsive electronics.</p><p></p>
|
110 |
Electrochemical model based fault diagnosis of lithium ion batteryRahman, Md Ashiqur 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A gradient free function optimization technique, namely particle swarm optimization (PSO) algorithm, is utilized in parameter identification of the electrochemical model of a Lithium-Ion battery having a LiCoO2 chemistry. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, Navy over-discharged battery, 24-hr over-discharged battery, and over-charged battery. It is important for a battery management system to have these parameters changes fully captured in a bank of battery models that can be used to monitor battery conditions in real time. In this work, PSO methodology has been used to identify four electrochemical model parameters that exhibit significant variations under severe operating conditions. The identified battery models were validated by comparing the model output voltage with the experimental output voltage for the stated operating conditions. These identified conditions of the battery were then used to monitor condition of the battery that can aid the battery management system (BMS) in improving overall performance. An adaptive estimation technique, namely multiple model adaptive estimation (MMAE) method, was implemented for this purpose. In this estimation algorithm, all the identified models were simulated for a battery current input profile extracted from the hybrid pulse power characterization (HPPC) cycle simulation of a hybrid electric vehicle (HEV). A partial differential algebraic equation (PDAE) observer was utilized to obtain the estimated voltage, which was used to generate the residuals. Analysis of these residuals through MMAE provided the probability of matching the current battery operating condition to that of one of the identified models. Simulation results show that the proposed model based method offered an accurate and effective fault diagnosis of the battery conditions. This type of fault diagnosis, which is based on the models capturing true physics of the battery electrochemistry, can lead to a more accurate and robust battery fault diagnosis and help BMS take appropriate steps to prevent battery operation in any of the stated severe or abusive conditions.
|
Page generated in 0.1277 seconds