Spelling suggestions: "subject:"lichtleitung"" "subject:"lichtleistung""
1 |
Light guidance in Müller cells of the vertebrate retinaAgte, Silke 02 April 2013 (has links) (PDF)
Die Funktionsweise des invertierten Aufbaus der Netzhaut im Wirbeltierauge ist ein altes Rätsel der Wissenschaft. Das beim Sehvorgang auf die Netzhaut einfallende Licht muss erst alle Netzhautschichten durchdringen, bevor es die Photorezeptorzellen erreicht, welche sich auf der lichtabgewandten Seite des Gewebes befinden. Die vorgelagerten Gewebsschichten enthalten zahlreiche lichtstreuende Bestandteile und müssten den Sehvorgang der Wirbeltiere theoretisch negativ beeinflussen. Diese Annahme steht jedoch im Widerspruch zu dem beeindruckenden Sehvermögen der meisten Wirbeltiere. Die Müllerschen Radialgliazellen stellen eine Lösung für diesen scheinbaren Widerspruch dar. Aufgrund der auffälligen morphologischen Struktur dieser Gliazellen, welche die gesamte Dicke der Netzhaut säulenförmig durchspannen, wurde die Hypothese aufgestellt, dass Müllerzellen nach dem Prinzip der Lichtleitung arbeiten und so das Licht zu den Photorezeptoren transportieren. Diese Theorie konnte jedoch bisher noch nicht bewiesen werden, da die bisherigen experimentellen Messmethoden auf der Basis von isolierten Müllerzellen ungeeignet sind, um diese Funktion im lebenden Gewebe nachzuweisen.
Die vorliegende Arbeit beweist erstmalig, dass die Müllerschen Gliazellen als lebende Lichtleiter im Netzhautgewebe funktionieren. Um diese Aufgabe den Müllerzellen eindeutig zuzuordnen, wurde eine neuartige Methode entwickelt, welche gleichzeitig mehrere für den Nachweis unverzichtbare Parameter erfassen kann. Aufgrund einer fluoreszenzbasierten Visualisierung der Müllerzellen in der intakten Netzhaut konnte mit Hilfe eines auf Glasfaseroptik basierenden Aufbaus die Beleuchtung einzelner Müllerzellen erfolgen. Zeitgleich war es möglich, sowohl den Weg des Lichtes von der lichtzugewandten Seite bis zu den Photorezeptoren als auch die Transmission hinter dem Gewebe zu detektieren. Die Komplexität dieses Messverfahrens erlaubte eine detaillierte Charakterisierung des Einflusses der Müllerzelle auf die Streueigenschaften der verschiedenen retinalen Schichten sowie des sich ergebenden Lichtsignals an den Rezeptorzellen. Mittels eines speziellen Analyseverfahrens konnte umfassendes Datenmaterial erhoben und so die Müllerzelle eindeutig als Lichtleiter identifiziert werden. Darauf aufbauend wird in dieser Arbeit außerdem gezeigt, dass alle Müllerzellen gemeinsam und damit in ihrer Gesamtheit mittels ihrer Lichtleitfunktion das an den Photorezeptoren ankommende Lichtmuster beeinflussen, was zu einer verbesserten Bildqualität führt. Dies wird zusätzlich durch morphologische Untersuchungen gestützt, die zeigen, dass die für das Kontrastsehen verantwortlichen Zapfen-Photorezeptorzellen lokal hinter den Müllerzellen angeordnet sind. Demnach ist jeder Zapfen mit einem ihm vorgelagerten Lichtleiter ausgestattet. Zusammenfassend liefert diese Arbeit eine Erklärung, wie trotz des invertierten Aufbaus der Netzhaut die visuelle Information als Grundlage für das Sehen der Wirbeltiere erhalten bleibt.
|
2 |
Light guidance in Müller cells of the vertebrate retinaAgte, Silke 01 March 2013 (has links)
Die Funktionsweise des invertierten Aufbaus der Netzhaut im Wirbeltierauge ist ein altes Rätsel der Wissenschaft. Das beim Sehvorgang auf die Netzhaut einfallende Licht muss erst alle Netzhautschichten durchdringen, bevor es die Photorezeptorzellen erreicht, welche sich auf der lichtabgewandten Seite des Gewebes befinden. Die vorgelagerten Gewebsschichten enthalten zahlreiche lichtstreuende Bestandteile und müssten den Sehvorgang der Wirbeltiere theoretisch negativ beeinflussen. Diese Annahme steht jedoch im Widerspruch zu dem beeindruckenden Sehvermögen der meisten Wirbeltiere. Die Müllerschen Radialgliazellen stellen eine Lösung für diesen scheinbaren Widerspruch dar. Aufgrund der auffälligen morphologischen Struktur dieser Gliazellen, welche die gesamte Dicke der Netzhaut säulenförmig durchspannen, wurde die Hypothese aufgestellt, dass Müllerzellen nach dem Prinzip der Lichtleitung arbeiten und so das Licht zu den Photorezeptoren transportieren. Diese Theorie konnte jedoch bisher noch nicht bewiesen werden, da die bisherigen experimentellen Messmethoden auf der Basis von isolierten Müllerzellen ungeeignet sind, um diese Funktion im lebenden Gewebe nachzuweisen.
Die vorliegende Arbeit beweist erstmalig, dass die Müllerschen Gliazellen als lebende Lichtleiter im Netzhautgewebe funktionieren. Um diese Aufgabe den Müllerzellen eindeutig zuzuordnen, wurde eine neuartige Methode entwickelt, welche gleichzeitig mehrere für den Nachweis unverzichtbare Parameter erfassen kann. Aufgrund einer fluoreszenzbasierten Visualisierung der Müllerzellen in der intakten Netzhaut konnte mit Hilfe eines auf Glasfaseroptik basierenden Aufbaus die Beleuchtung einzelner Müllerzellen erfolgen. Zeitgleich war es möglich, sowohl den Weg des Lichtes von der lichtzugewandten Seite bis zu den Photorezeptoren als auch die Transmission hinter dem Gewebe zu detektieren. Die Komplexität dieses Messverfahrens erlaubte eine detaillierte Charakterisierung des Einflusses der Müllerzelle auf die Streueigenschaften der verschiedenen retinalen Schichten sowie des sich ergebenden Lichtsignals an den Rezeptorzellen. Mittels eines speziellen Analyseverfahrens konnte umfassendes Datenmaterial erhoben und so die Müllerzelle eindeutig als Lichtleiter identifiziert werden. Darauf aufbauend wird in dieser Arbeit außerdem gezeigt, dass alle Müllerzellen gemeinsam und damit in ihrer Gesamtheit mittels ihrer Lichtleitfunktion das an den Photorezeptoren ankommende Lichtmuster beeinflussen, was zu einer verbesserten Bildqualität führt. Dies wird zusätzlich durch morphologische Untersuchungen gestützt, die zeigen, dass die für das Kontrastsehen verantwortlichen Zapfen-Photorezeptorzellen lokal hinter den Müllerzellen angeordnet sind. Demnach ist jeder Zapfen mit einem ihm vorgelagerten Lichtleiter ausgestattet. Zusammenfassend liefert diese Arbeit eine Erklärung, wie trotz des invertierten Aufbaus der Netzhaut die visuelle Information als Grundlage für das Sehen der Wirbeltiere erhalten bleibt.
|
3 |
Development of a single photon detector using wavelength-shifting and light-guiding technologyHebecker, Dustin 27 August 2021 (has links)
Das IceCube Neutrino-Observatorium ist ein am geografischen Südpol im Eis installierter Neutrinodetektor. In IceCube werden Neutrinos mit Tscherenkow-Strahlung von Sekundärteilchen aus Neutrino Interaktionen detektiert. Für den Nachfolgedetektor IceCube-Gen2, werden neue und verbesserte Lichtdetektoren gesucht.
Die vorliegende Arbeit beschreibt die Entwicklung eines dieser Lichtdetektoren. Dieser basiert auf Wellenlängen schiebenden und Licht leitenden Technologien. Der Detektor mit dem Namen "Wavelength-shifting Optical Module" (WOM) verwendet eine transparente Röhre, mit wellenlängenschiebender Farbe, als passiver Photonendetektor. Das in der Wellenlänge verschobene Licht wird durch Totalreflexion, zu kleinen PMTs an beiden Enden geleitet. Die Auswahl dieses Designs reduziert die Kosten und verbessert das Signal-Rausch-Verhältnis wesentlich, möglicherweise können mit dieser Lösung extragalaktische Supernova in zukünftigen Detektoren beobachtet werden.
Als eine Kernkomponente wird die wellenlängenschiebende Röhre ausführlich untersucht. Verschiedene Messaufbauten und Auswertungsmethoden werden entwickelt, um diese im Anschluss zu untersuchen und zu bewerten. Iterative Verbesserungen der Materialien und des Farbauftrageverfahren als auch Messmethoden, resultieren in einer kombinierten Einfang-, Wellenlängenschiebe- und Transporteffizienz von 28,1 +/- 5,4 % der Röhre. Ein Model zur Beschreibung des Lichtverhaltens in der Röhre wird entwickelt um eine Diskrepanz zwischen Theorie und Messung zu untersuchen. Die Kombination zwischen Messung und Model, bestätigt die Aussagekraft des Models und zeigt, dass ein Großteil der Verluste beim Lichttransport zustande kommen.
Darüber hinaus werden die physikalischen Eigenschaften des WOM in die IceCube Simulationsumgebung eingebaut. Der Vergleich zu einem Konkurrenzmodul zeigt eine Überlegenheit des WOM um den Faktor 1,05 +/- 0,07. Es werden Vorschläge und Ausblicke für Verbesserungen der Leistungsfähigkeit des WOMs gegeben. / The IceCube Neutrino Observatory is an in ice neutrino detector located at the geographic South Pole. In IceCube neutrinos are detected via Cherenkov light produced by secondary particles in neutrino interactions. For the upgraded detector IceCube-Gen2, new and improved light detectors are sought-after.
This work describes the development of one of those light detectors based on a novel combination of wavelength-shifting and light-guiding technology. The detector named the Wavelength-shifting Optical Module (WOM) utilizes a large transparent tube, coated with wavelength-shifting paint as a passive photon detector. The wavelength-shifted light is guided via total internal reflection towards small active light detectors, at each end of the tube. This design reduces costs and improves the signal to noise ratio significantly, thereby potentially enabling extragalactic supernova detections in future detectors.
As a core component, the wavelength-shifting tube is extensively investigated. Different measurement setups and evaluation techniques are developed and investigated. Iterative improvement of materials and coating techniques as well as measurement methods currently result in a combined photon capture, shift and transport efficiency of 28.1 +/- 5.4 % for the tube. Those results contrast the theoretical maximum of 74.5 %. A model is developed to describe the light propagation and loss processes in the tube and to understand the discrepancies between theory and measurement. The combination of the measurements with the model, validate the descriptive qualities of the model and show that most of the light is lost during the light propagation in the tube.
Additionally, the physical properties of the WOM are included in the IceCube simulation framework. A comparison to a competing module showed that the WOM outperforms by a factor of 1.05 +/- 0.07 in photon detection numbers. Where applicable, suggestions and outlooks are given to enhance the performance of the WOM.
|
Page generated in 0.0576 seconds