Spelling suggestions: "subject:"eie algebra"" "subject:"iie algebra""
11 |
Exhaust systems' models investigation by theoretical group methodsVolkmann, Jörg January 2007 (has links)
Zugl.: Ulm, Univ., Diss., 2007
|
12 |
Παρατήρηση και σταθεροποίηση αμετάβλητων συστημάτων επί ομάδων LieΑποστόλου, Νικόλαος 06 October 2009 (has links)
- / -
|
13 |
Cohomology Operations and the Toral Rank Conjecture for Nilpotent Lie AlgebrasAmelotte, Steven January 2013 (has links)
The action of various operations on the cohomology of nilpotent Lie algebras is studied. In the cohomology of any Lie algebra, we show that the existence of certain nontrivial compositions of higher cohomology operations implies the existence of hypercube-like structures in cohomology, which in turn establishes the Toral Rank Conjecture for that Lie algebra. We provide examples in low dimensions and exhibit an infinite family of nilpotent Lie algebras of arbitrary dimension for which such structures exist. A new proof of the Toral Rank Conjecture is also given for free two-step nilpotent Lie algebras.
|
14 |
Quivers and Three-Dimensional Lie AlgebrasPike, Jeffrey January 2015 (has links)
We study a family of three-dimensional Lie algebras that depend on a continuous parameter. We introduce certain quivers and prove that idempotented versions of the enveloping algebras of the Lie algebras are isomorphic to the path algebras of these quivers modulo certain ideals in the case that the free parameter is rational and non-rational, respectively. We then show how the representation theory of the introduced quivers can be related to the representation theory of quivers of affine type A, and use this relationship to study representations of the family of Lie algebras of interest. In particular, though it is known that this particular family of Lie algebras consists of algebras of wild representation type, we show that if we impose certain restrictions on weight decompositions, we obtain full subcategories of the category of representations that are of finite or tame representation type.
|
15 |
Representations of nine-dimensional Levi decomposition Lie algebras and Lie-Einstein Spaces in 7 DimensionKhanal, Sunil January 2020 (has links)
No description available.
|
16 |
Canoniical involutions and bosonic representations of three-dimensional lie colour algebrasSigurdsson, Gunnar January 2004 (has links)
No description available.
|
17 |
Group invariant solutions for the unsteady magnetohydrodynamic flow of a fourth grade fluid in a porous mediumCarrim, Abdul Hamid 18 July 2014 (has links)
The e ects of non-Newtonian uids are investigated by means of two appropri-
ate models studying a third and fourth grade uid respectively. The geometry
of both these models is described by the unsteady unidirectional
ow of an in-compressible
uid over an in nite at rigid plate within a porous medium. The uid is electrically conducting in the presence of a uniform applied magnetic eld that occurs in the normal direction to the ow.
The classical Lie symmetry approach is undertaken in order to construct
group invariant solutions to the governing higher-order non-linear partial dif-ferential equations. A three-dimensional Lie algebra is acquired for both uid ow problems.
In each case, the invariant solution corresponding to the non-travelling wave
type is considered to be the most signi cant solution for the uid ow model
under investigation since it directly incorporates the magnetic eld term. A numerical solution to the governing partial di erential equation is produced and a comparison is made with the results obtained from the analytical ap-proach.
Finally, a graphical analysis is carried out with the purpose of observing the
e ects of the emerging physical parameters. In particular, a study is carried
out to examine the in uences of the magnetic eld parameter and the non-Newtonian
fluid parameters.
|
18 |
Arithmetic and Hyperbolic Structures in String Theory / Structures arithmétiques et hyperboliques en théorie des cordesPersson, Daniel 12 June 2009 (has links)
Résumé anglais:
This thesis consists of an introductory text followed by two separate parts which may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of spacelike singularities (the BKL-limit). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be mapped to an auxiliary problem given in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of gravity. We investigate the modification of the billiard dynamics when the original gravitational theory is formulated on a compact spatial manifold of arbitrary topology, revealing fascinating mathematical structures known as galleries. We further use the conjectured hyperbolic symmetry E10 to generate and classify certain cosmological (S-brane) solutions in eleven-dimensional supergravity. Finally, we show in detail that eleven-dimensional supergravity and massive type IIA supergravity are dynamically unified within the framework of a geodesic sigma model for a particle moving on the infinite-dimensional coset space E10/K(E10).
Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are typically given by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by moduli-dependent functions which are manifestly invariant under G(Z), known as automorphic forms. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on a special class of functions known as (non-holomorphic) Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also discuss the possibility that certain generalized Eisenstein series, which are covariant under the maximal compact subgroup K(G), could play a role in determining the exact effective action for toroidally compactified higher derivative corrections. Finally, we propose that in the case of rigid Calabi-Yau compactifications in type IIA string theory, the exact universal hypermultiplet moduli space exhibits a quantum duality group given by the emph{Picard modular group} SU(2,1;Z[i]). To verify this proposal we construct an SU(2,1;Z[i])-invariant Eisenstein series, and we present preliminary results for its Fourier expansion which reveals the expected contributions from D2-brane and NS5-brane instantons.
/
Résumé francais:
Cette thèse est composée d'une introduction suivie de deux parties qui peuvent être lues indépendemment. Dans la première partie, nous analysons des structures hyperboliques apparaissant dans l'étude de la gravité au voisinage d'une singularité de type espace (la limite BKL). Dans cette limite, les points spatiaux se découplent et la dynamique suit un comportement ultralocal qui peut être reformulé en termes d'un billiard hyperbolique (qui peut être chaotique). Dans toutes les supergravités qui sont des limites de basse énergie de théories de cordes ou de la théorie M, la dynamique du billiard prend place à l'intérieur des chambres de Weyl fondamentales de certaines algèbres de Kac-Moody hyperboliques, ce qui suggère que ces algèbres correspondent à des symétries cachées de dimension infinie de la gravité. Nous examinons comment la dynamique du billard est modifiée quand la théorie de gravité originale est formulée sur une variété spatiale compacte de topologie arbitraire, révélant ainsi de fascinantes structures mathématiques appelées galleries. De plus, dans le cadre de la supergravité à onze dimensions, nous utilisons la symétrie hyperbolique conjecturée E10 pour engendrer et classifier certaines solutions cosmologiques (S-branes). Finalement, nous montrons en détail que la supergravité à onze dimensions et la supergravité de type IIA massive sont dynamiquement unifiées dans le contexte d'un modèle sigma géodesique pour une particule se déplaçant sur l'espace quotient de dimension infinie E10/K(E10).
La deuxième partie de cette thèse est consacrée à étudier comment les dualités U en théorie des cordes fournissent des contraintes puissantes sur les corrections quantiques perturbatives et non perturbatives. Ces dualités sont typiquement données par des groupes arithmétiques G(Z) dont il est conjecturé qu'ils préservent l'action effective. Les couplages exacts sont donnés par des fonctions des moduli qui sont manifestement invariantes sous G(Z), et qu'on appelle des formes automorphiques. Nous discutons en détail différentes méthodes de construction de ces formes automorphiques, en insistant particulièrement sur une classe spéciale de fonctions appelées séries d'Eisenstein (non holomorphiques). Nous présentons comme exemples les cas de SL(2,Z) et SL(3,Z), qui sont physiquement pertinents. Nous construisons les séries d'Eisenstein correspondantes et leurs expansions de Fourier (non abéliennes). Nous discutons également la possibilité que certaines séries d'Eisenstein généralisées, qui sont covariantes sous le sous-groupe compact maximal, pourraient jouer un rôle dans la détermination des actions effectives exactes pour les théories incluant des corrections de dérivées supérieures compactifiées sur des tores.
|
19 |
Invariant Lie polynomials in two and three variables.Hu, Jiaxiong 21 August 2009
In 1949, Wever observed that the degree d of an invariant Lie polynomial must be a multiple of the number q of generators of the free Lie algebra. He also found that there are no invariant Lie polynomials in the following cases: q = 2, d = 4; q = 3, d = 6; d = q ≥ 3. Wever gave a formula for the number of invariants for q = 2
in the natural representation of sl(2). In 1958, Burrow extended Wevers formula to q > 1 and d = mq where m > 1.
In the present thesis, we concentrate on finding invariant Lie polynomials (simply called Lie invariants) in the natural representations of sl(2) and sl(3), and in the adjoint representation of sl(2). We first review the method to construct the Hall basis of the free Lie algebra and the way to transform arbitrary Lie words into linear combinations of Hall words.
To find the Lie invariants, we need to find the nullspace of an integer matrix, and for this we use the Hermite normal form. After that, we review the generalized Witt dimension formula which can be used to compute the number of primitive Lie invariants of a given degree.
Secondly, we recall the result of Bremner on Lie invariants of degree ≤ 10 in the natural representation of sl(2). We extend these results to compute the Lie invariants of degree 12 and 14. This is the first original contribution in the present thesis.
Thirdly, we compute the Lie invariants in the adjoint representation of sl(2) up to degree 8. This is the second original contribution in the present thesis.
Fourthly, we consider the natural representation of sl(3). This is a 3-dimensional natural representation of an 8-dimensional Lie algebra. Due to the huge number of Hall words in each degree and the limitation of computer hardware, we compute the Lie invariants only up to degree 12.
Finally, we discuss possible directions for extending the results. Because there
are infinitely many different simple finite dimensional Lie algebras and each of them
has infinitely many distinct irreducible representations, it is an open-ended problem.
|
20 |
Invariant Lie polynomials in two and three variables.Hu, Jiaxiong 21 August 2009 (has links)
In 1949, Wever observed that the degree d of an invariant Lie polynomial must be a multiple of the number q of generators of the free Lie algebra. He also found that there are no invariant Lie polynomials in the following cases: q = 2, d = 4; q = 3, d = 6; d = q ≥ 3. Wever gave a formula for the number of invariants for q = 2
in the natural representation of sl(2). In 1958, Burrow extended Wevers formula to q > 1 and d = mq where m > 1.
In the present thesis, we concentrate on finding invariant Lie polynomials (simply called Lie invariants) in the natural representations of sl(2) and sl(3), and in the adjoint representation of sl(2). We first review the method to construct the Hall basis of the free Lie algebra and the way to transform arbitrary Lie words into linear combinations of Hall words.
To find the Lie invariants, we need to find the nullspace of an integer matrix, and for this we use the Hermite normal form. After that, we review the generalized Witt dimension formula which can be used to compute the number of primitive Lie invariants of a given degree.
Secondly, we recall the result of Bremner on Lie invariants of degree ≤ 10 in the natural representation of sl(2). We extend these results to compute the Lie invariants of degree 12 and 14. This is the first original contribution in the present thesis.
Thirdly, we compute the Lie invariants in the adjoint representation of sl(2) up to degree 8. This is the second original contribution in the present thesis.
Fourthly, we consider the natural representation of sl(3). This is a 3-dimensional natural representation of an 8-dimensional Lie algebra. Due to the huge number of Hall words in each degree and the limitation of computer hardware, we compute the Lie invariants only up to degree 12.
Finally, we discuss possible directions for extending the results. Because there
are infinitely many different simple finite dimensional Lie algebras and each of them
has infinitely many distinct irreducible representations, it is an open-ended problem.
|
Page generated in 0.0562 seconds