Spelling suggestions: "subject:"eie algebra"" "subject:"iie algebra""
21 |
Fourier transforms of invariant functions on finite reductive Lie algebras /Letellier, Emmanuel. January 2005 (has links)
Diss.--Paris, 2003. / Literaturverz. S. [159] - 162.
|
22 |
The fine structure of translation functors, the triangle function and a construction of R-matricesGünzl, Karen. Unknown Date (has links) (PDF)
University, Diss., 2000--Freiburg (Breisgau).
|
23 |
Algebraic discrete Morse theory and applications to commutative algebra (Algebraische diskrete Morse-Theorie und Anwendungen in der kommutativen Algebra) /Jöllenbeck, Michael. January 2005 (has links) (PDF)
Marburg, University, Diss., 2005.
|
24 |
Fluxo do grupo de renormalização dos modelos-'alfa' e as álgebras de Lie contínuasRoa Aguirre, Alexis [UNESP] 29 August 2008 (has links) (PDF)
Made available in DSpace on 2016-05-17T16:51:02Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-08-29. Added 1 bitstream(s) on 2016-05-17T16:54:20Z : No. of bitstreams: 1
000854764.pdf: 562890 bytes, checksum: 164c6db1a3c04e45b5f0eea9ea15e58e (MD5) / Este trabalho é basicamente uma revisão de alguns aspectos de integrabilidade em duas dimensões discutidos no artigo Renormalization group flows and continual Lie algebras do professor Ioannis Bakas. A idéia é estudar o fluxo do grupo de renormalização das métricas bi-dimensionais nos modelos-'alfa' usando a função beta a 1-loop, e mostrar que elas fornecem análogos contínuos das equações de campo de Toda nas coordenadas conformemente planas do espaço target. Nesta formulção algébrica, a escala logaritmica de comprimento da folha mundo é interpretada como o parâmetro de Dynkin num sistema de raízes de uma álgebra de Lie contínua, denotada por G(d/dt;II), com um kernel de Cartan generalizado anti-simétrico K(t,t') = 'alfa'(t−t'). Usando o formalismo de curvatura zero construiremos a solução geral do fluxo do grupo de renormalização em termos das configurações de campo livre por meio de transformações de Bäcklund. A validade desta solução geral como uma expansão em serie de potência será testada com alguns exemplos especiais que incluim o modelo sausage, as métricas de curvatura constante negativa e a queda de singularidades côonicas / This work is basically a review of some aspect of the integrability in two dimensions discussed in the Prof. Ioannis Bakas's paper called Renormalization group flows and continual Lie algebras. The main idea is to study the renormalization group flow of two-dimensional metrics in sigma models using the one-loop beta function, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates in the target space. In this algebraic frame, the logarithm of the world-sheet length scale t is interpreted as Dynkin parameter on the root system of a continual Lie algebra, denoted by G(d/dt;II),witha an ti-symmetric generalized Cartan kernel K(t,t') ='sigmma'(t−t'). Using the zero curvature formalism, we construct a general solution of the renormalization group flow in terms of the free field configurations via B¨acklund transformations. The validity of these general solutions as a power series expansion is verified in some specials examples including the sausage model, the constant negative curvature metrics and the decay of conical singularities
|
25 |
Fluxo do grupo de renormalização dos modelos-'alfa' e as álgebras de Lie contínuas /Roa Aguirre, Alexis. January 2008 (has links)
Orientador: Abraham Hirsz Zimerman / Banca: Nathan Jacob Berkovits / Banca: Victor de Oliveira Rivelles / Resumo: Este trabalho é basicamente uma revisão de alguns aspectos de integrabilidade em duas dimensões discutidos no artigo "Renormalization group flows and continual Lie algebras" do professor Ioannis Bakas. A idéia é estudar o fluxo do grupo de renormalização das métricas bi-dimensionais nos modelos-'alfa' usando a função beta a 1-loop, e mostrar que elas fornecem análogos contínuos das equações de campo de Toda nas coordenadas conformemente planas do espaço target. Nesta formulção algébrica, a escala logaritmica de comprimento da folha mundo é interpretada como o parâmetro de Dynkin num sistema de raízes de uma álgebra de Lie contínua, denotada por G(d/dt;II), com um kernel de Cartan generalizado anti-simétrico K(t,t') = 'alfa'(t−t'). Usando o formalismo de curvatura zero construiremos a solução geral do fluxo do grupo de renormalização em termos das configurações de campo livre por meio de transformações de Bäcklund. A validade desta solução geral como uma expansão em serie de potência será testada com alguns exemplos especiais que incluim o modelo "sausage", as métricas de curvatura constante negativa e a queda de singularidades côonicas / Abstract: This work is basically a review of some aspect of the integrability in two dimensions discussed in the Prof. Ioannis Bakas's paper called "Renormalization group flows and continual Lie algebras". The main idea is to study the renormalization group flow of two-dimensional metrics in sigma models using the one-loop beta function, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates in the target space. In this algebraic frame, the logarithm of the world-sheet length scale t is interpreted as Dynkin parameter on the root system of a continual Lie algebra, denoted by G(d/dt;II),witha an ti-symmetric generalized Cartan kernel K(t,t') ='sigmma'(t−t'). Using the zero curvature formalism, we construct a general solution of the renormalization group flow in terms of the free field configurations via B¨acklund transformations. The validity of these general solutions as a power series expansion is verified in some specials examples including the sausage model, the constant negative curvature metrics and the decay of conical singularities / Mestre
|
26 |
Canoniical involutions and bosonic representations of three-dimensional lie colour algebrasSigurdsson, Gunnar January 2004 (has links)
No description available.
|
27 |
Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan AlgebrasAmmar, Gregory, Mehl, Christian, Mehrmann, Volker 09 September 2005 (has links) (PDF)
We describe canonical forms for elements of a classical Lie group of matrices under similarity transformations in the group. Matrices in the associated Lie algebra and Jordan algebra of matrices inherit related forms under these similarity transformations. In general, one cannot achieve diagonal or Schur form, but the form that can be achieved displays the eigenvalues of the matrix. We also discuss matrices in intersections of these classes and their Schur-like forms. Such multistructered matrices arise in applications from quantum physics and quantum chemistry.
|
28 |
Linear Algebra on the Lie Algebra on Two GeneratorsWebb, Sarah 21 December 2022 (has links)
No description available.
|
29 |
Simple Modules over Lie AlgebrasNilsson, Jonathan January 2016 (has links)
Simple modules are the elemental components in representation theory for Lie algebras, and numerous mathematicians have worked on their construction and classification over the last century. This thesis consists of an introduction together with four research articles on the subject of simple Lie algebra modules. In the introduction we give a light treatment of the basic structure theory for simple finite dimensional complex Lie algebras and their representations. In particular we give a brief overview of the most well-known classes of Lie algebra modules: highest weight modules, cuspidal modules, Gelfand-Zetlin modules, Whittaker modules, and parabolically induced modules. The four papers contribute to the subject by construction and classification of new classes of Lie algebra modules. The first two papers focus on U(h)-free modules of rank 1 i.e. modules which are free of rank 1 when restricted to the enveloping algebra of the Cartan subalgebra. In Paper I we classify all such modules for the special linear Lie algebras sln+1(C), and we determine which of these modules are simple. For sl2 we also obtain some additional results on tensor product decomposition. Paper II uses the theory of coherent families to obtain a similar classification for U(h)-free modules over the symplectic Lie algebras sp2n(C). We also give a proof that U(h)-free modules do not exist for any other simple finite-dimensional algebras which completes the classification. In Paper III we construct a new large family of simple generalized Whittaker modules over the general linear Lie algebra gl2n(C). This family of modules is parametrized by non-singular nxn-matrices which makes it the second largest known family of gl2n-modules after the Gelfand-Zetlin modules. In Paper IV we obtain a new class of sln+2(C)-modules by applying the techniques of parabolic induction to the U(h)-free sln+1-modules we constructed in Paper I. We determine necessary and sufficient conditions for these parabolically induced modules to be simple.
|
30 |
Deformation Theory of Infinity AlgebrasAlice Fialowski, Michael Penkava, fialowsk@cs.elte.hu 03 July 2000 (has links)
No description available.
|
Page generated in 0.0702 seconds