• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriedades termo-eletr?nicas da mol?cula do DNA

Moreira, Darlan Ara?jo 29 September 2008 (has links)
Made available in DSpace on 2015-03-03T15:16:23Z (GMT). No. of bitstreams: 1 DarlanAM.pdf: 1538525 bytes, checksum: af051bdcc4894d0bf236b2e6f943baa9 (MD5) Previous issue date: 2008-09-29 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Esta tese apresenta um abrangente e atualizado estudo de algumas propriedades f?sicas da mol?cula do DNA, tais como seus aspectos termodin?micos (calor espec?fico) e eletr?nicos (transmissividade eletr?nica, fator de localiza??o, entre outros). A mol?cula do DNA pode ser considerada uma seq??ncia simb?lica de quatro letras: guanina (G), adenina (A), citosina (C) e timina (T). Ela ? usualmente descrita como uma cadeia bidimensional aleat?ria com correla??o de curto-alcance, mas n?o h? impedimentos para que a cadeia seja crescida seguindo seq??ncias quasi-peri?dicas, como por exemplo, as sequ?ncias de Fibonacci e Rudin-Shapiro. Com o intuito de investigar a relev?ncia das correla??es subjacentes nas distribui??oes dos nucleot?deos, comparamos os resultados para a sequ?ncia gen?mica do DNA (Ch22) com as duas seq??ncias artificiais citadas acima, que possuem correla??ao de longo alcance. A an?lise do calor espec?fico ? feita considerando-se formalismos apropriados; o cl?ssico, utilizando a distribui??o de Maxwell-Boltzmann; a descri??oo qu?ntica, utilizando a distribui??o de Fermi-Dirac; e o formalismo da n?o-extensividade, usando a entropia de Tsallis. Os espectros de energias s?o calculados utilizando-se a equa??o de Schrodinger unidimensional na aproxima??o de liga??o forte. N?s calculamos tamb?m a transmissividade eletr?nica, o comprimento de localiza??o, bem como I (corrente) vs V (potencial), curva que caracteriza as propriedades el?tricas de uma mol?cula de DNA dupla fita. O modelo te?rico considerado faz uso de um Hamiltoniano efetivo com aproxima??o de liga??o-forte descrevendo um el?tron movendo-se em uma cadeia com um simples orbital por s?tio e intera??es entre vizinhos mais pr?ximos, juntamente com a equa??o de Schrodinger, e a muito conveniente t?cnica da matriz de transfer?ncia
2

Estat?stica n?o-extensiva aplicada ao c?lculo do calor espec?fico eletr?nico em estruturas quasiperi?dicas

Ferreira, Alzey Gomes 02 October 2008 (has links)
Made available in DSpace on 2014-12-17T15:14:49Z (GMT). No. of bitstreams: 1 AlzeyGF.pdf: 1374839 bytes, checksum: 04a6f9d10ed4cb9e18af438a89ba7f26 (MD5) Previous issue date: 2008-10-02 / Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr?odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr?odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q / Sistemas cujos espectros s?o fractais ou multifractais t?m sido bastante estudados nos ?ltimos anos. O entendimento completo do comportamento de muitas propriedades f?sicas destes sistemas ainda est? longe de ser completamente efetivado devido ? complexidade dos pr?prios sistemas. Desta maneira, novas aplica??es e novos m?todos de estudo dos seus espectros t?m sido feitos, possibilitando uma melhor compreens?o acerca desses sistemas. Apresentamos neste trabalho de disserta??o inicialmente todo o arcabou?o te?rico b?sico e necess?rio no tocante ? obten??o dos espectros de energia de excita??es elementares em alguns sistemas, mais especificamente nos sistemas quasiperi?dicos. Posteriormente mostramos, usando a equa??o de Schrodinger na aproxima??o de liga??o forte, os resultados para o calor espec?fico de el?trons com a mec?nica estat?stica de Boltzmann-Gibbs para sistemas quasiperi?dicos unidimensionais tipo Fibonacci e Per?odo Duplo. Estruturas desse tipo j? foram bastante exploradas, no entanto o uso da mec?nica estat?stica n?o-extensiva proposta por Constantino Tsallis ? bem adequado para sistemas que apresentam de alguma forma um perfil fractal, e portanto nosso principal objetivo foi aplic?-la para o c?lculo de grandezas termodin?micas ampliando um pouco mais a compreens?o das propriedades desses sistemas. Neste sentido, calculamos anal?tica e numericamente o calor espec?fico generalizado de el?etrons em sistemas quasiperi?dicos unidimensionais (quasicristais) gerados pelas sequ?ncias de Fibonacci e Per?odo Duplo. Os espectros eletr?nicos foram obtidos fazendo-se uso tamb?m da equa??o de Schrodinger na aproxima??o de liga??o forte. Resultados num?ricos s?o apresentados para os dois tipos de sistemas com diferentes valores do par?metro de n?o-extensividade q

Page generated in 0.062 seconds