• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da influência do cobre em ligas ternárias de NiTiCu para utilização em biomateriais. / Study of the influence of copper on NiTiCu ternary alloys for use in biomaterials.

OLIVEIRA, Cláudio Emanuel Silva. 08 March 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-03-08T21:00:00Z No. of bitstreams: 1 CLÁUDIO EMANUEL SILVA OLIVEIRA - TESE PPGEQ 2016..pdf: 1522932 bytes, checksum: af3e91fc6bc098f58a808b7fd90cc619 (MD5) / Made available in DSpace on 2018-03-08T21:00:00Z (GMT). No. of bitstreams: 1 CLÁUDIO EMANUEL SILVA OLIVEIRA - TESE PPGEQ 2016..pdf: 1522932 bytes, checksum: af3e91fc6bc098f58a808b7fd90cc619 (MD5) Previous issue date: 2016 / A utilização de ligas de Nitinol (NiTi) são extremamente importantes na fabricação de dispositivos biomédicos, por combinarem as características peculiares dessas ligas metálicas como superelasticidade e efeito memória de forma. Em decorrência da alta concentração do Níquel nas ligas de NiTi, teoricamente é possível a dissolução do Níquel nos líquidos corpóreos em decorrência dos processos de corrosão, podendo ocasionar efeitos indesejados. Os fenômenos de biocompatibilidade e biotoxicidade do NiTi têm sido exaustivamente estudados, visando assim, minimizar os danos da utilização desses materiais. Em decorrência desses estudos, foi proposto neste trabalho de pesquisa a diminuição da concentração do metal Níquel nas ligas de NiTi e a sua substituição pelo metal Cobre, formando assim uma liga metálica de NiTiCu. Foram utilizadas técnicas eletroquímicas para observação da corrosão e as características encontradas em cada liga de NiTiCu com composição diferenciada e compará-las com as de NiTi para uma melhor abordagem do problema e identificação das semelhanças e diferenças percebidas entre as ligas estudadas, além de uma comparação superficial desse material com uso de técnicas de Microscopia Eletrônica de Varredura, Calorimetria Diferencial de Varredura e Microdureza de Vicks. O comportamento eletroquímico das ligas de NiTi e NiTiCu, foram estudadas utilizando de técnicas eletroquímicas de Polarização Linear, Voltametria Cíclica e Impedância Eletroquímica, em dois meios corrosivos Solução de Hanks (sangue artificial) e Solução de Saliva Artificial que se assemelham bastante as condições corpóreas das áreas de utilização desses biomateriais, a uma temperatura ambiente de aproximadamente 25°C, para verificação da durabilidade das ligas metálicas. Observou-se que quanto maior a concentração de Cobre nas ligas de NiTiCu, menos resistente a corrosão esse material terá. Na caracterização superficial, verifica-se que as ligas contendo a menor concentração de Cobre, possuem características superficiais que se assemelham mais com as condições das ligas de NiTi que já são amplamente utilizadas em dispositivos biomédicos. Com a análise de todos os testes eletroquímicos e de caracterização superficial e estrutural das ligas metálicas de NiTiCu e NiTi, verifica-se que as ligas metálicas contendo NiTiCu com pequenos percentuais de Cobre próximo a 5%, possuem características semelhantes as de NiTi, favorecendo a possível utilização dessa liga ternária de NiTiCu para produção de biomateriais para medicina e odontologia, desde que haja estudos mais amplos e interdisciplinares para análises detalhadas referentes a biocompatibilidade, biotoxicidade e de desenvolvimento celular desta nova liga metálica. / The use of Nitinol alloys (NiTi) are extremely important in the manufacture of biomedical devices, for combining the unique characteristics of such alloys and superelasticity and shape memory effect. Due to the high concentration of nickel in alloys of NiTi, it is theoretically possible dissolution of nickel in body fluids as a result of corrosion processes, which may cause unwanted effects. The phenomena of biocompatibility and biotoxicity of NiTi have been thoroughly studied, thus aiming to minimize the damage from the use of these materials. As a result of these studies, it was proposed in this research work to decrease in metal concentration in nickel NiTi alloys and their replacement by copper metal, thereby forming an alloy NiTiCu. Electrochemical techniques were used to observe the corrosion and features found in each league NiTiCu with different composition and compare them with the NiTi for a better approach to the problem and identify the similarities and differences perceived between the studied alloys, as well as a comparison surface of the material with the use of scanning electron microscopy techniques, Differential Scanning Calorimetry and Microhardness of Vicks. The electrochemical behavior of the alloys of NiTi and NiTiCu were studied using electrochemical techniques Linear Polarization, Cyclic Voltammetry and Electrochemical Impedance in two corrosive media Hanks solution (artificial blood) and Solution Saliva Artificial that closely resemble the bodily conditions areas of use of these biomaterials, at an ambient temperature of about 25 ° C to check the durability of metal alloy. It was observed that the higher the concentration of copper in the alloy NiTiCu less corrosion-resistant the material will have. In the superficial characterization, it appears that the alloys containing the lowest concentration of copper, have surface characteristics that are more similar to the conditions of NiTi alloys are widely utilized in biomedical devices. With the analysis of all electrochemical tests and superficial and structural characterization of metal alloys NiTiCu and NiTi, it is found that alloys containing NiTiCu with copper percentages small close to 5%, have similar characteristics of NiTi, favoring possible use of this ternary alloy NiTiCu for the production of biomaterials for medicine and dentistry, provided there is wider and interdisciplinary studies for detailed analysis regarding biocompatibility, biotoxicity and mobile development of this new alloy.
2

Processo e caracterização de ligas Ti-Ni-Cu com efeito de memória de forma solidificadas rapidamente. / Process and characterization of Ti-Ni-Cu alloys with shape memory effect solidified rapidly. / Proceso y caracterización de aleaciones Ti-Ni-Cu con efecto de memoria de forma solidificadas rápidamente. / Processus et caractérisation d'alliages Ti-Ni-Cu avec effet de mémoire de forme rapidement solidifié. / Ti-Ni-Cu合金的工藝和特性表徵。

ANSELMO, George Carlos dos Santos. 06 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-06T20:54:52Z No. of bitstreams: 1 GEORGE CARLOS DOS SANTOS ANSELMO - TESE PPG-CEMat 2014..pdf: 19735821 bytes, checksum: c92e61b342c27548f43bd01d30640a96 (MD5) / Made available in DSpace on 2018-04-06T20:54:52Z (GMT). No. of bitstreams: 1 GEORGE CARLOS DOS SANTOS ANSELMO - TESE PPG-CEMat 2014..pdf: 19735821 bytes, checksum: c92e61b342c27548f43bd01d30640a96 (MD5) Previous issue date: 2014-08-29 / Ligas com efeito de memória de forma possuem grande potencial para aplicações nos setores da robótica, automotivo, aeronáutico, medicina e na produção de atuadores miniaturizados. O objetivo desse trabalho foi investigar e desenvolver materiais com efeito de memória de forma (Shape Memory Effect - SME) das ligas Ti-Ni-Cu na forma de fitas micrométricas produzidos por meio de Melt Spinning. A metodologia utilizada para produção das ligas Ti-Ni-Cu foi via fusão a plasma (Plasma Skull Push-Pull), e para fabricação de fitas utilizou-se a técnica de solidificação rápida por injeção de metal líquido em volante de cobre nas velocidades de 38 e 50 m/s, logos após as ligas e fitas Ti-Ni-Cu foram caracterizadas por: DSC, SMRT, DRX, MEV. Inicialmente barras prismáticas da liga Ti-Ni50-x-Cux (x=3,4,5,6,7%at.Cu) foram produzidas via fusão a plasma. Por meio solidificação rápida obteve-se fitas com espessuras de 30 a 45 µm com a variação da velocidade do volante de cobre de 38 e 50 m/s no Melt Spinning. Ensaios de DRX revelam à presença da fase B19’ nas ligas brutas de fusão a temperatura ambiente. As ligas apresentaram transformações de fase em único estágio B2↔B19`. As temperaturas de transformação As das ligas Ti-Ni-Cu decrescem com o incremento de Cu. Concluise que as temperaturas de transformação martensíticas (Ms) de fitas Ti-Ni-Cu decrescem com a diminuição do tamanho de grão, e os valores de histerese e entalpia decrescem quando altas taxas de super-resfriamento são alcançadas no Melt Spinnig. / Alloys with shape memory effect have immense potential for applications in robotics, automotive and aeronautics industry, medicine and in the production of miniaturized actuators. The aim of this study was to investigate, develop and manufacture materials with shape memory effect of Ti-Cu-Ni alloys in the form of micrometer tapes produced by Melt Spinning. The methodology used for the production of Ti-Cu-Ni alloys by fusion plasma (Plasma Skull Push-Pull), and manufacturing tapes used the technique of rapid solidification injection of liquid metal into the copper wheel speeds 38 and 50 m/s. alloy and Ti-Ni-Cu ribbons were characterization by: DSC, SMRT, XRD, SEM. Initially prismatic bars of Ti-Ni50-x-Cux (x = 3,4,5,6,7 at.Cu%) had been produced by plasma fusion. With the rapid solidification is obtained tapes with thicknesses between 30 to 45 µm with the variation of the speed of the wheel covers 38 and 50 m / s the melt spinning. XRD tests reveal the presence of the B19' in gross phase alloy melting temperature. The alloys showed phase transformations in single stage B2↔B19`. The transformation temperatures of the alloy Ti-Cu-Ni decrease with the increase of Cu. We conclude that the temperatures of martensitic transformation (Ms) of Ti-Ni-Cu ribbons decreases with decreasing grain size, and hysteresis values and enthalpy decreases when high rates of super-cooling are achieved in Melt Spinnig.

Page generated in 0.0361 seconds