• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 11
  • 7
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 31
  • 14
  • 12
  • 7
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The effects of PPAR ligands in human acute lymphocytic leukemia cell lines /

Liu, Hongyu. January 2006 (has links)
Zugl.: Berlin, Charité, University-Med., Diss., 2006.
12

Synthese von dualen NMDA-Rezeptor-/Dopamin-Rezeptor-Liganden

Frank, Ina. Unknown Date (has links)
Universiẗat, Diss., 2006--Frankfurt (Main).
13

Substrate specificity of Glycine Oxidase and protein interaction specificity of the neuronal cell adhesion molecule TAG-1

Mörtl, Mario Samuel. January 2006 (has links)
Konstanz, Univ., Diss., 2006.
14

Untersuchungen zur Endozytose in Pflanzenzellen mittels artifizieller Rezeptoren

Hoppmann, Verena. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
15

Untersuchungen zur LDL-Rezeptoraktivität des Karpfen (Cyprinus carpio L.)

Lobemeier, Martin Landolf. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Kiel.
16

Functional dynamics of protein-ligand interactions

Mittag, Tanja Unknown Date (has links)
Univ., Diss., 2004--Frankfurt (Main) / Enthält Sonderabdr. aus versch. Zeitschr.
17

Identifizierung von Peptidliganden für funktionelle RNA-Strukturen über Screening von Phage-Display-Banken

Pustowka, Anette Unknown Date (has links)
Univ., Diss., 2004--Frankfurt (Main)
18

Biophysical investigation of the ligand-induced assembling of the human type I interferon receptor

Lamken, Peter. Unknown Date (has links)
University, Diss., 2005--Frankfurt (Main). / Zsfassung in dt. und engl. Sprache.
19

Neue künstliche Guanidiniocarbonylpyrrol-Rezeptoren zur Komplexierung von Oxo-Anionen in Wasser / New artificial Guanidiniocarbonyl Pyrrole Receptors for the Complexation of Oxo-Anions in Water

Bickert, Volker January 2008 (has links) (PDF)
Ziel der Dissertation „Neue künstliche Guanidiniocarbonylpyrrol-Rezeptoren zur Komplexierung von Oxo-Anionen in Wasser“ war die Weiterentwicklung dieser Rezeptoren nach Schmuck für die Komplexierung insbesondere von Carboxylaten, um sie hinsichtlich Bindungsaffinität und Substratspezifität zu optimieren. Dazu wurde zunächst die Synthese zweier wichtiger Grundbausteine in einzelnen Schritten vollständig überarbeitet, wobei veränderte Reaktionsbedingungen und Aufarbeitungsschritte zu gesteigerten Ausbeuten führten. Dadurch ist es nun möglich, diese Bausteine effizienter zu synthetisieren und im Multigramm-Maßstab für die Darstellung von Rezeptoren zur Oxo-Anionen-Erkennung einzusetzen. Weiterhin wurde die Verbesserung der Komplexierungseigenschaften gegenüber Carboxylaten auf zwei Arten untersucht: zum einen durch das Anbringen eines zusätzlichen Seitenarms an der Guanidinio-Einheit zur Bildung von Guanidiniocarbonylpyrrol-Tweezer-Rezeptoren, zum anderen durch das Einführen einer zweiten positiven Ladung neben der Carboxylat-Bindungsstelle (CBS) zur Darstellung biskationischer Guanidiniocarbonylpyrrol-Rezeptoren. Zur Darstellung von Tweezer-Rezeptoren wurde ein zusätzlicher Seitenarm an der N’-Position der Guanidinio-Einheit angebracht. Die beiden Arme sollten ein Substrat pinzettenartig von zwei Seiten, mit der CBS als Kopfgruppe, komplexieren können. Durch zusätzliche Wechselwirkungen des neuen Seitenarms sollte neben einer stärkeren Komplexierung vor allem eine höhere Substratspezifität erzielt werden. Die experimentell ermittelten Bindungskonstanten lagen allerdings im Bereich der N’-unsubstituierten Rezeptoren. Somit stellen die Tweezer-Modifikationen daher keine Verbesserung der Guanidiniocarbonylpyrrol-Rezeptoren dar. In einem weiteren Projekt zur Rezeptor-Optimierung wurden, durch Einführung einer zweiten positiven Ladung in Form einer terminalen Ammonium-Gruppe, biskationische Guanidiniocarbonylpyrrol-Rezeptoren erfolgreich synthetisiert. Die Komplexierungseigenschaften dieser biskationischen Rezeptoren wurden in Bindungsstudien vornehmlich mit Aminosäurecarboxylaten mittels UV- und Fluoreszenz-Spektroskopie, Massenspektrometrie, NMR-Spektroskopie, ITC und Molecular Modeling Berechnungen untersucht. Anhand der Substratspezifität der biskationischen Rezeptoren wurde deutlich, dass die Spacerlänge, an der die zusätzliche positive Ladung angebracht ist, eine entscheidende Rolle bei der Komplexierung spielte. Galten eigentlich starre, präorganisierte, kurze Linker als vorteilhaft hinsichtlich der Entropie, so ist hier zu erkennen, dass längere, flexiblere Linker zu einer besseren Komplexierung führen können, wenn geeignete zusätzliche nichtkovalente Wechselwirkungen möglich sind. Die biskationischen Rezeptoren stellen damit eine Optimierung des Carboxylat-Bindungsmotivs der Guanidiniocarbonylpyrrol-Rezeptoren nach Schmuck in der Anionen-Erkennung dar. / The main focus of the thesis “New artificial guanidiniocarbonyl pyrrole receptors for the complexation of oxo-anions in water” is the optimization of these receptors introduced by Schmuck for the oxo-anion recognition, especially carboxylates, in aqueous solution. Therefore, the details of the synthesis of two important building blocks were completely revised and yields increased by changing reaction conditions, workup and isolation steps. The new optimized, facile and efficient synthetic route to these N-protected guanidinocarbonyl pyrrole derivatives allows now a multi-gram synthesis of these versatile compounds as needed for the synthesis for a variety of supramolecular anion binding motifs. Furthermore two strategies to optimize the anion recognition have been pursued: On the one hand tweezer receptors were developed by connecting an additional side chain to the head group at the N’-position of the guanidino group. On the other hand another second positive charge was introduced into the receptor besides the carboxylate binding site (CBS) by an ammonium group to get bis-cationic receptors The tweezer receptors were developed in order to complex the guest from more than one side. A second side chain, connected to the N’-position of the guanidinio motif, leads to this kind of receptor, with the CBS as a head group. By using additional non covalent interactions in both side chains, the association constant as well as the specificity should be increased. In case of the optimization of the binding properties, the tweezer receptors have showen binding properties similar to the N’-unsubstituted guanidiniocarbonyl pyrrole receptors with respect to association constants and specificity. For this reason the tweezer receptors were no improvement of the guanidiniocarbonyl pyrrole receptors. In another project for optimization of the binding properties several bis-cations were synthesized, with a simple primary ammonium cation attached via flexible linkers of varying length to a guanidiniocarbonyl pyrrole. In UV-binding studies in aqueous buffer these bis-cations have shown efficient binding of various N-acetyl amino acid carboxylates. Further investigations by fluorescence spectroscopy, mass spectrometry, NMR spectroscopy, ITC as well as molecular mechanics calculations confirm the complexation by participation of the second charge in the complexation of the carboxylic function and therefore an increasing in complex stability. It is generally assumed, that short and rigid linkers are better for complexation due to the entropy and that a steady decrease of a linker length increase the complex stability. However, this case shows, that complex stability can increase while increasing the flexibility of a linker until other non covalent interactions are possible. Hence, the bis-cationic receptors indeed represent an optimisation of the guanidiniocarbonyl pyrrole receptors for oxo-anion-binding.
20

Computersimulationen zur Untersuchung von Wassermolekülen in Protein-Ligand Komplexen am Beispiel einer Modellbindetasche / Analysis of water molecules in protein-ligand complexes with the help of computer simulations using the example of a model binding site

Cappel, Daniel January 2011 (has links) (PDF)
Wassermoleküle spielen oft eine entscheidende Rolle bei der Bindung von Liganden an Proteine. Zum einen ist dies in ihrer Eigenschaft als Wasserstoffbrückendonor und -akzeptor begründet, die es ermöglicht Wechselwirkung zwischen Ligand und Rezeptor zu vermitteln. Zum anderen stellen die Desolvatisierungsenthalpie und -entropie einer Bindetasche während der Ligandbindung einen entscheidenden Anteil der Bindungsaffinität dar. Obwohl man sich dieser Einflüsse seit langem bewusst ist, sind aktuelle Methoden des computerbasierten Wirkstoffdesigns nur in sehr begrenztem Umfang in der Lage, die entsprechenden Effekte zu erfassen und vorherzusagen. Da experimentelle Daten über die Effekte von Wassermolekülen in Protein-Ligand Komplexen von Natur aus schwierig zu erhalten sind, untersucht die vorliegende Arbeit eine Modellbindetasche einer Cytochrom c Peroxidase Mutante (CCP W191G) mit Hilfe von Molecular Modeling Techniken. Diese polare und solvatisierte Kavität ist strukturell sehr gut charakterisiert und bindet kleine, kationische Heterozyklen zusammen mit unterschiedlichen Mengen an Wassermolekülen. Für die Untersuchungen wurden strukturell ähnliche Liganden mit einem unterschiedlichen Wechselwirkungsmuster ausgewählt. Davon ausgehend wurde die Möglichkeit zweier Docking-Programme, den Grad der Wasserverdrängung durch den Liganden zusammen mit dem Bindungsmodus vorherzusagen, untersucht. Die dynamischen Eigenschaften der Bindetaschenwassermoleküle wurden mittels Molekulardynamiksimulationen studiert. Schließlich wurden diese rein strukturellen Betrachtungen durch eine energetische/thermodynamische Analyse komplettiert. Die Anwendung dieser unterschiedlichen Verfahren liefert einige neue Erkenntnisse über die untersuchte Modellbindetasche. Trotz der relativen Einfachheit der kleinen Kavität der CCP W191G Mutante war die vollständige Charakterisierung und eine korrekte (retrospektive) Vorhersage des Wasser-Wechselwirkungsmuster der Ligand-Komplexe nicht trivial. Zusammenfassend kann man festhalten, dass insgesamt eine gute Übereinstimmung zwischen den durch Computersimulationen erhaltenen Ergebnissen und den kristallographischen Daten erzielt wurde. Unerwartete Befunde, die auf den ersten Blick mit den kristallographischen Beobachtungen nicht übereinstimmen, können ebenso durch Limitationen in den Kristallstrukturen bedingt sein. Darüber hinaus gaben die Ergebnisse auch eine Hilfestellung, welches Verfahren zur Beantwortung einer Fragestellung im Rahmen von Wassermolekülen im Wirkstoffdesign geeignet sind. Schließlich wurden ebenso die Begrenzungen der jeweiligen Methoden aufgezeigt. / Water molecules play an important role for the binding of small molecule ligands to proteins. One of the reasons for this is their ability to act as a hydrogen bond donor and acceptor at the same time. Additionally, the enthalpy and entropy of desolvation of the pocket is one large contribution to the overall binding affinity. Although this is long known, prediction of these effects by current methods of computer-aided drug design is rather limited. Since experimental information about water effects in protein-ligand complexes are inherently difficult to obtain, in the present work a well-suited model binding site of a mutant of the cytochrome c peroxidase (CCP W191G) is studied using molecular modeling techniques. This polar and solvated cavity is structurally very well characterized and several small, cationic heterocycles bind together with a different amount of water molecules. For this study structurally similar ligands which have a different interaction pattern where chosen. First, the ability of two docking programs to predict cavity desolvation upon ligand binding was investigated. The dynamic properties of the binding site water molecules where studied by means of molecular dynamic simulations. Ultimately, the pure structural considerations addressed in this work were complemented by an energetic/thermodynamic analysis. The application of the different methods offered some new insights into the studied model binding site. Despite the relative simplicity of the small cavity of the CCP W191G mutant, a complete characterization and a correct (retrospective) prediction of the water interaction network in ligand complexes of this model binding site is not trivial. In summary, an overall good agreement between computational results and crystallographic data is obtained. Unexpected findings, which at first sight disagree with crystallographic observations, may also be due to limitations of the crystal structures. In addition, the results help to decide which method is appropriate to address a certain question in the context of water molecules in drug design. Also, the limitations of the respective methods are exposed.

Page generated in 0.3698 seconds