• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 11
  • 7
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 32
  • 15
  • 12
  • 8
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

BMP Ligand-Rezeptor-Komplexe: Molekulare Erkennung am Beispiel der Spezifischen Interaktion zwischen GDF-5 und BMPR-IB / BMP ligand receptor complexes: Molecular recognition exemplified by the specific interaction between GDF-5 and BMPR-IB

Kotzsch, Alexander January 2008 (has links) (PDF)
Knochenwachstumsfaktoren (Bone Morphogenetic Proteins, BMPs) sind ubiquitäre, sekretierte Proteine mit vielfältigen biologischen Funktionen. Die Vielfalt an zellulären Prozessen, die durch BMPs reguliert werden, von der Knochenentwicklung und Organhomöostase bis hin zur Neurogenese, erstaunt – und wirft angesichts von teils redundanten, teils spezifischen Funktionen der BMPs Fragen zu den Mechanismen ihrer Signalübermittlung auf. Die Signaltransduktion von BMPs erfolgt wie bei den strukturell verwandten TGF-βs und Activinen durch die ligandeninduzierte Oligomerisierung von transmembranen Serin/Threonin-Kinaserezeptoren, von denen zwei Typen – Typ I und Typ II – existieren. Einer Vielzahl von mehr als 18 BMP-Liganden stehen nach derzeitigem Erkenntnisstand nur vier Typ I und drei Typ II Rezeptorsubtypen für die Bildung von heteromeren Rezeptorkomplexen zur Verfügung. Ein BMP-Ligand kann hochspezifisch nur einen bestimmten Rezeptorsubtyp oder in einer promisken Art und Weise mehrere Rezeptorsubtypen binden. Trotz dieser Bindungspromiskuität üben BMPs ihre biologische Funktion überwiegend hochspezifisch aus, d.h. abhängig vom Liganden werden spezifische zelluläre Prozesse reguliert. Somit stellt sich die Frage, wie die Bildung von heteromeren Ligand-Rezeptor-Komplexen und die Aktivierung definierter intrazellulärer Signalkaskaden zusammenhängen und wie letztlich ein bestimmtes BMP-Signal durch einen „Flaschenhals“, repräsentiert durch die begrenzte Anzahl an Rezeptorsubtypen, in das Zellinnere übermittelt wird. Die Interaktionen zwischen BMP-2 / GDF-5 und den Typ I Rezeptoren BMPR-IA / BMPR-IB sind ein Paradebeispiel für Bindungspromiskuität und -spezifität. Während BMP-2 beide Rezeptoren BMPR-IA und BMPR-IB mit gleicher Bindungsaffinität bindet („promiske Interaktion“), zeigt GDF-5 eine 15-20fach höhere Bindungsaffinität zu BMPR-IB („spezifische“ Interaktion). Dieser Unterschied ist scheinbar gering, aber physiologisch überaus relevant. Um Einblick in die Mechanismen der molekularen Erkennung zwischen den Bindungspartnern zu gewinnen, wurden binäre und ternäre Komplexe aus den Liganden BMP-2 oder GDF-5, den extrazellulären Domänen der Typ I Rezeptoren BMPR-IA oder BMPR-IB sowie der extrazellulären Domäne des Typ II Rezeptors ActR-IIB untersucht. Die hier vorliegende Arbeit beschreibt die strukturelle und funktionelle Analyse dieser Ligand-Rezeptor-Komplexe. Um den Einfluss struktureller Flexibilität auf die BMP Typ I Rezeptor Erkennung näher zu analysieren, wurde zudem die Struktur von BMPRIA in freiem Zustand mittels NMR-Spektroskopie aufgeklärt. Aus Mutagenesedaten und der Kristallstruktur des GDF-5•BMPR-IB-Komplexes lassen sich im Vergleich zu bekannten Kristallstrukturen Merkmale ableiten, mit denen die Ligand-Rezeptor-Bindung und -Erkennung charakterisiert werden kann: (1) Die Hauptbindungsdeterminanten in Komplexen von BMPR-IA und BMPR-IB mit ihren Liganden sind unterschiedlich. Während in Komplexen mit BMPR-IB ein hydrophobes Motiv die Bindungsaffinität bestimmt, trägt in Komplexen mit BMPR-IA eine polare Interaktion signifikant zur Bindungsenergie bei. Ein Vergleich der Strukturen von freien und gebundenen Liganden und Typ I Rezeptoren zeigt, dass interessanterweise diese Hauptbindemotive erst bei der Ligand-Rezeptor-Interaktion entstehen, sodass ein „induced fit“ vorliegt und die Moleküle entsprechend „aufeinander falten“. (2) Die Bindungsspezifität wird durch periphere Schleifen in den Typ I Rezeptoren bestimmt. Wie Untersuchungen von Punktmutationen in BMPR-IA zeigen, die einer krebsartigen Darmerkrankung (Juvenile Polyposis) zugrunde liegen, führt erst die „richtige“ Kombination aus Flexibilität in den Schleifen und Rigidität des Rezeptorgrundgerüsts zu signalaktiven Typ I Rezeptoren mit einer potentiell den Liganden komplementären Oberfläche. Die mangelnde sterische Komplementarität von Ligand- und Rezeptoroberflächen führt zu der niedrigeren Bindungsaffinität von GDF-5 zu BMPR-IA im Vergleich zu BMPR-IB. Interessanterweise zeigen die hier vorgestellten, hochaufgelösten Strukturdaten, dass die Orientierungen/Positionen der Typ I Rezeptoren BMPR-IA und BMPR-IB in den Bindeepitopen der Liganden BMP-2 und GDF-5 variieren. Unter der Voraussetzung, dass die extrazelluläre Domäne, das Transmembransegment und die intrazelluläre Domäne der Typ I Rezeptoren ein starres Element bilden, sollte sich die unterschiedliche Orientierung der extrazellulären Domänen der Typ I Rezeptoren in der Anordnung der Kinasedomänen widerspiegeln und sich auf die Signaltransduktion auswirken. Möglicherweise ist eine bestimmte Anordnung der Kinasedomänen der Typ I und Typ II Rezeptoren für eine effiziente Phosphorylierung bzw. Signaltransduktion erforderlich. Der Vergleich mehrerer Ligand-Typ I Rezeptor-Komplexe zeigt, dass die unterschiedliche Orientierung dieser Rezeptoren möglicherweise vom Liganden abhängt. Angesichts der Bindungspromiskuität unter BMP-Liganden und -Rezeptoren könnten so spezifische Signale übermittelt und spezifische biologische Funktionen reguliert werden. Die in dieser Arbeit vorgestellten Erkenntnisse tragen wesentlich zur strukturellen Charakterisierung der Ligand-Rezeptor-Erkennung in der BMP-Familie bei. Die Frage, warum trotz strukturell hoch homologer Liganden und Rezeptoren und weitgehend konservierten Bindeepitopen eine teils promiske und teils spezifische Interaktion möglich ist, kann nun für die Liganden BMP-2 und GDF-5 sowie den beiden Typ I Rezeptoren BMPR-IA und BMPR-IB beantwortet werden. / Bone morphogenetic proteins (BMPs) are ubiquitous, secreted cytokines involved in a manifold of biological functions. The diversity of cellular processes regulated by BMPs, from bone development to tissue homeostasis and neuronal processes, is amazing – and raises questions about the mechanisms of signal transduction in the light of redundant functions on the one hand, and specific functions on the other hand. Similar to structurally related activins and TGF-βs, the signal transduction of BMPs is accomplished by ligand-induced oligomerization of transmembrane BMP type I and type II serine/threonine receptor kinases. According to current knowledge, only four type I and three type II receptor subtypes are available for BMP signal transduction, facing a multitude of more than 18 BMP ligands. Binding of BMP ligands to their receptors can be highly specific meaning that only one specific receptor of either subtype is used for signaling. In contrast, many BMP ligands can recruit more than one receptor subtype, which results in binding promiscuity. However, even though receptor subtypes are bound in a promiscuous manner, only certain biological functions are triggered. Dependent on the BMP ligand, specific cellular processes are activated and regulated. This discrepancy between unspecific binding and specific signaling events and the biological response raises the question how the formation of heteromeric ligand-receptor complexes is linked to the activation of defined intracellular signaling cascades, and finally, how a certain BMP signal is transduced into the interior of the cell through a „bottleneck“ represented by the limited number of receptor subtypes. The interaction between BMP-2 / GDF-5 and the BMP type I receptors BMPR-IA / BMPR-IB is a prime example for binding promiscuity and binding specificity. BMP-2 binds BMPR-IA and BMPRIB with almost equal binding affinity („promiscuous interaction“) while GDF-5 exhibits a 15-20fold higher binding affinity to BMPR-IB („specific interaction“). Although this difference is seemingly small, it is however of considerable relevance for the physiological role of these ligands. To gain insight into the mechanisms of molecular recognition between the binding partners, binary and ternary ligand-receptor complexes consisting of BMP-2 or GDF-5, the extracellular domains of the type I receptors BMPR-IA or BMPR-IB, and the extracellular domain of the type II receptor ActRIIB were investigated. The thesis presented here describes the structural and functional analysis of these ligand-receptor complexes. To analyse the effect of structural flexibility on BMP type I receptor recognition in more detail, the structure of free BMPR-IA was determined using NMR spectroscopy. Based on data from a limited mutagenesis and the crystal structure of the GDF-5•BMPR-IB complex several characteristics concerning ligand-receptor binding and recognition can be deduced: (1) The main binding determinants in complexes of BMPR-IA and BMPR-IB with their ligands BMP-2 and GDF-5 differ. A hydrophobic binding motif determines binding affinity in complexes of BMPR-IB, whereas a polar interaction significantly contributes to binding energy in complexes of BMPR-IA. These main binding motifs are only formed during complex formation as demonstrated by a comparison between structures of free and bound ligands as well as type I receptors. Both ligand and receptor fold „onto each other“ which suggests an induced fit mechanism. (2) Binding specificity is encoded on loops at the periphery of the binding epitope of the type I receptors. Only the „appropriate“ combination between structural flexibility in the receptor loops and structural rigidity of the receptor backbone results in signal active type I receptors, as shown by analysis of single polymorphisms in BMPR-IA causing juvenile polyposis syndrome, a cancerous disease of the intestine. A lack of steric surface complementarity between GDF-5 and BMPR-IA, that cannot be overcome by structural flexibility, leads to the lower binding affinity in comparison to BMPR-IB. Interestingly, the high resolution structure of the GDF-5•BMPR-IB complex shows that the orientations/positions of BMPR-IA in the binding epitope of BMP-2 and of BMPR-IB in the binding epitope of GDF-5 vary. Assuming that the extracellular domain, the transmembrane segment, and the intracellular domain of the type I receptors form a rigid element, the different orientations of the extracellular domains should also reflect the assembly of the kinase domains and therefore, affect signal transduction. One can assume that a defined arrangement of the kinase domains of type I and type II receptors is required to allow for efficient phosphorylation and signal transduction, respectively. The comparison of several BMP ligand-type I receptor complexes suggests that the different orientations of these receptors are likely dependent on the ligand. Considering the binding promiscuity among BMP ligands and receptors such a mechanism would represent a possible way for the transmission of specific signals and regulation of specific biological functions. The insights into molecular structure and function of BMP ligands and receptors presented in this thesis contribute significantly to a more detailed understanding of their binding properties. The question why the interaction of BMP ligands and receptors is promiscuous on the one hand and specific on the other hand in spite of structurally highly homologous molecules can now be answered for BMP-2 and GDF-5 as well as BMPR-IA and BMPR-IB.
32

Kationische Copolymere für den rezeptorvermittelten Gentransfer / Cationic copolymers for the receptor-mediated gene transfer

Sieverling, Nathalie January 2005 (has links)
Ziel dieser Arbeit war die Entwicklung neuer Substanzen für die Gentherapie. Diese beinhaltet die Behebung von erblich bedingten Krankheiten wie z.B. Mucoviscidose. Dabei werden im Zellkern defekte Gene durch normale, gesunde DNA-Sequenzen ersetzt. Zur Einschleusung des Genmaterials in die Zellen (Transfektion) werden geeignete Transport-Systeme bzw. Methoden benötigt, die dort die Freisetzung der neu einzubauenden Gene (Genexpression ausgedrückt in Transfektionseffizienzen) gestatten. Hierfür wurden neue Polykation-DNA-Komplexe (Vektoren) auf Basis kationischer Polymere wie Poly(ethylenimin) (PEI) hergestellt, charakterisiert und nachfolgend in Transfektionsversuchen an verschiedenen Zelllinien eingesetzt.<br> Sowohl das kationische Ausgangspolymer PEI als auch das Pfropfcopolymer PEI-g-PEO (PEO-Seitenketten zur Erhöhung der Biokompatibilität) wurden mit Rezeptorliganden modifiziert, um eine verbesserte und spezifische Transfektion an ausgesuchten Zellen zu erreichen. Als Liganden wurden Folsäure (Transfektion an HeLa-Zellen), Triiod-L-thyronin (HepG2-Zellen) und die Uronsäuren der Galactose, Mannose, Glucose sowie die Lactobionsäure (HeLa-, HepG2- und 16HBE-Zellen) verwendet.<br> Das PEI, die Pfropfcopolymere PEI-g-PEO und die Ligand-funktionalisierten Copolymere wurden hinsichtlich ihrer chemischen Zusammensetzung und molekularen Parameter charakterisiert. Die Molmassenuntersuchungen mittels Größenausschlusschromatographie zeigten, dass nach der Synthese unterschiedliche Polymerfraktionen mit nicht einheitlicher chemischer Zusammensetzung vorlagen.<br> Die anschließenden Transfektionsversuche wurden mit Hilfe einer speziellen DNA (Luciferase) an den Zelllinien HepG2 (Leberkrebszellen), HeLa (Gebärmutterhalskrebszellen) und 16HBE (Atemwegsepithelzellen) durchgeführt. Die T3(Triiod-L-thyronin)-Vektoren zeigten in Abhängigkeit vom eingesetzten Komplexverhältnis Polykation/DNA ein Maximum in der Transfektion an HepG2-Zellen. Die Hypothese der rezeptorvermittelten Endozytose ließ sich durch entsprechende T3-Überschuss-Experimente und Fluoreszenzmikroskopie-Untersuchungen bestätigen. Dagegen konnte bei den Folsäure-Vektoren keine rezeptorvermittelte Endozytose beobachtet werden.<br> Bei den Vektoren mit Mannuronsäure-Ligand (Man) konnte an allen drei Zelllinien (HepG2, HeLa, 16HBE) eine konstante, hohe Transfereffizienz nachgewiesen werden. Sie waren bei allen eingesetzten Polymer-DNA-Verhältnissen effizienter als der Vergleichsvektor PEI. Dieses Transfektionsverhalten ließ sich durch Blockierung der Zuckerstruktur unterbinden. In Transfektionsexperimenten mit einem Überschuss an freier Mannuronsäure und fluoreszenzmikroskopischen Untersuchungen konnte eine rezeptorvermittelte Endozytose der Man-Vektoren an den o.g. Zelllinien nachgewiesen werden. Die anderen Uronsäure-Konjugate zeigten keine signifikanten Abweichungen im Transfektionsverhalten im Vergleich zum PEI-Vektor. / The goal of this work was the development of new non-viral gene transfer systems for the somatic gene therapy. For these non-viral gene vectors (polycation-DNA-complexes) on the base of ligand-functionalized polycations were synthesized, characterized and tested in transfection trials on different cell cultures (HepG2, HeLa, 16HBE).<br> In preliminary investigations PEI-g-PEO copolymers with different grafting densities of poly(ethylene oxide) PEO8 were synthesized and characterized. This was followed by modification of PEI and the copolymer PEI-g-PEO(20) with specific receptor ligands for transfection studies to the cell lines mentioned above. Folic acid (transfection at HeLa cells), triiodo-L-thyronine (HepG2 cells) and the uronic acids of galactose, mannose, glucose as well as the lactobionic acid (HeLa, HepG2 and 16HBE cells) were used as ligands. The coupling of the ligands was performed either without a spacer or via PEO side chains and was realized by carbodiimids.<br> The PEI and the grafted copolymers PEI-g-PEO as well as the ligand-functionalized copolymers were characterized regarding to their chemical composition and molecular parameters. Molar masses from sedimentation rate experiments of the AUC were obtained within the range of 35000 to 70000 g/mol. The molar mass investigations by means of SEC-MALLS revealed that after the grafting process both copolymers with heterogeneous chemical composition and unmodified PEI were present. The polydispersity of all PEI-g-PEO(20) based copolymers increased significantly compared with unmodified PEI. The molar masses increased with higher conversion degree as expected. The highly-substituted products exhibited an increasingly more compact structure in aqueous solution.<br> The following transfection studies were accomplished with the help of a luciferase reporter genes at the cultures HepG2 (liver cancer cells), HeLa (cervix cancer cells) and 16HBE (lung epithelium cells). The grafted copolymers PEI-g-PEO were compared to the unmodified PEI vector in transfection experiments. Here an almost identical transfer efficiency compared to the unmodified PEI vector could be maintained accompanied by reduced toxicity up to a PEO content of 17% w/w.<br> Folic acid copolymers were tested on HeLa cells in further vector studies. All folic acid vectors showed a maximum in the transfection at a N/P ratio (complex of polycation with DNA) of 2.5 and/or 5.0, which refers to a receptor-mediated endocytosis. However, no receptor-mediated endocytosis was observed in transfection.<br> A similar transfection behavior was observed with the T3 vectors on HepG2 cells dependent on the N/P ratio. The hypothetical receptor-mediated endocytosis could be confirmed within the T3-functionalized vectors by appropriate T3 excess experiments. Herein the transfer efficiency of the T3 gene vectors decreased significantly while adding free low-molecular weight triiodo-L-thyronine. In contrast to this the transfer efficiency of the unmodified PEI vector decreased only negligibly. A receptor-mediated endocytosis was also confirmed by fluorescence microscopy investigation of T3-functionalized aminodextranes at transfection of HepG2 cells. Subsequently, the T3 vectors were tested at mice in vivo. Here high transfer efficiencies in comparison to the unmodified PEI vector were determined particularly in the spleen as well as in the kidneys and thyroid. The T3 vectors should be suitable for a gene transfer into hepatocytes.<br> The vectors with uronic acid conjugates as ligands (galacturonic-, glucuronic and lactobionic acid) did not show significant deviations in the transfer efficiencies compared with the PEI vector. In contrast to this the vectors with mannuronic acid exhibit a constant high transfer efficiency at the three cell cultures HepG2, HeLa and 16HBE. They are more efficient than the PEI vector over the examined N/P range. Here the transfection proceeds independently of the charge of the complex (N/P ratio). This transfection behavior could be prevented by blocking the glycosidic OH groups of the Man vector. A receptor-mediated endocytosis of the Man vectors at the three examined cell lines (HepG2, HeLa, 16HBE) could be verified by means of transfection experiments with an excess of free mannuronic acid and fluorescence microscopic investigations.<br> In continuing studies new gene vectors on the base of cationic starch graft copolymers were synthesized and tested in transfection studies at HepG2 and 16HBE cells. Beyond that peptide-functionalized PEI vectors, which exhibit a nuclear localization sequence (TAT), were established and their transfection in vitro was determined. Compared to the PEI vector lower transfections of the vectors on the base of cationic starch graft copolymers was observed. However, an increase is expected by coupling with T3 and mannuronic acid ligands.

Page generated in 0.096 seconds