• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 22
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 184
  • 184
  • 117
  • 50
  • 40
  • 28
  • 26
  • 22
  • 21
  • 19
  • 18
  • 16
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Receptor concentration affects glucocorticoid action

Robertson, Steven Ernest 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / See also the post-print version of the article that was published from the PhD - http://hdl.handle.net/10019.1/19557 / ENGLISH ABSTRACT: Glucocorticoid receptor (GR) levels, which modulate the response to glucocorticoids (GCs), vary between tissues and individuals and are altered by physiological and pharmacological effectors. In this study we set out to investigate the effects and implications of differences in GR concentration. Firstly, we established conditions that resulted in three statistically different GR populations in transiently transfected COS-1 cells. We demonstrated, using whole cell saturation ligand binding experiments, that high levels of wild type GR, but not of dimerization deficient GR, exhibited positive cooperative ligand binding with a concomitant increased ligand binding affinity. Furthermore, we established, through co-immunoprecipitation and fluorescent resonance energy transfer, that ligand independent dimerization correlates with positive cooperative ligand binding. This is the first time that positive cooperative ligand binding and increased ligand binding affinity have been explicitly correlated and linked to increased ligand independent dimerization of the GR. The downstream consequences of variation in GR concentration and dimerization included modulation of GR import and export rates, as investigated through live cell as well as immunofluorescent analysis. Furthermore, the nuclear distribution of GR was also influenced by GR dimerization. The major function of the GR is as a transcription factor, which mediates the response to GCs via activation or repression of genes. We have revealed direct influences of GR concentration and dimerization in a number of promoter reporter assays as well as in the transactivation of an endogenous gene. Specifically, cooperative ligand binding was found to be responsible for the GR level dependent potency shift in transrepression of an NF B containing promoter reporter construct via dexamethasone and the shift in the bio-character of Compound A, a dissociative GR agonist. Transactivation potency of dexamethasone as well as the partial agonist bio-character of medroxyprogesterone and mifepristone via a multiple GRE containing promoter reporter construct were influenced directly by cooperative ligand binding. Dimerization of the GR was shown to be crucial for ligand dependent transactivation of a single GRE containing promoter reporter construct, while ligand independent transactivation of both single and multiple GRE containing constructs was significantly increased due to an increase in GR concentration. The endogenous GC responsive glucocorticoid induced leucine zipper (GILZ) gene demonstrated significant ligand independent transactivation at GR levels, which displayed ligand independent dimerization. An increase in GR concentration resulted in an increase in efficacy through all promoter reporter constructs as well as the endogenous GILZ gene. Positive cooperative binding and the concomitant increase in ligand binding affinity to the GR at high levels may be a crucial factor in determining both the efficacy and potency of the GC response. Considering the significant differences in GR concentrations expressed by different tissues and by individuals within the same tissue, our findings may explain the interindividual as well as tissue specific responses to GC treatment and suggest an important mechanism of action through which the GR is primed to responsed to subsaturating GC concentrations and displays a significant level of ligand independent activity. / AFRIKAANSE OPSOMMING: Glukokortikoïed reseptor (GR) vlakke, wat die gedrag van glukokortikoïede (GCs) moduleer, wissel tussen weefsels en onder individue en word verander deur fisiologiese en farmakologiese effektore. In hierdie studie ondersoek ons die gevolge en implikasies van verskille in GR konsentrasie. Eerstens het ons die kondisies vasgestel wat benodig word om drie statisties verskillende GR populasies te vestig in kortstondige getransfekteerde COS-1 selle. Ons het getoon, met behulp van die heel sel versadigings ligand bindings eksperimente, dat hoë vlakke van wilde-tipe GR, maar nie van dimeriserings gebrekkige GR, positiewe koöperatiewe ligand binding, met 'n gepaardgaande toename in ligand bindings affiniteit, toon. Verder het ons bevestig, deur ko-immunopresipitasie en fluoressente resonansie energie-oordrag, dat ligand onafhanklike dimerisering korreleer met positiewe koöperatiewe ligand binding. Dit is die eerste keer dat positiewe koöperatiewe ligand binding en verhoogde ligand bindings affiniteit uitdruklik gekorreleer en gekoppel word aan verhoogde ligand onafhanklike dimerisering van die GR. Die daarop nagevolge van variasie in GR konsentrasie en dimerisering sluit in modulasie van die invoer en uitvoer tempo van die GR, soos ondersoek deur lewendige sel sowel as immunofluorescente analise. Verder is die verspreiding van die GR in die kern ook beïnvloed deur GR dimerisering. Die belangrikste funksie van die GR is as 'n transkripsie faktor, wat die respons van GCS bemiddel via aktivering of onderdrukking van gene. Ons het die direkte invloed van GR konsentrasie en dimerisering in 'n aantal promotor verslaggewer essais sowel as in die transaktivering van endogene gene onthul. Spesifiek, is gevind dat koöperatiewe ligand binding verantwoordelik is vir die GR vlak afhanklike verskuiwing in transrepressie potensie van 'n NF B bevattende promotor verslaggewer konstruk via deksametasoon en die verskuiwing van die biokarakter van verbinding A,' dissosiatiewe GR agonis. Transaktiverings potensie van deksametasoon, asook die gedeeltelike agonis bio-karakter van medroksie-progesteroon en mifepristoon, via 'n veelvoudige GRE bevattende promotor verslaggewer konstruk is direk beïnvloed deur koöperatiewe ligand binding. Dimerisering van die GR is getoon om deurslaggewend vir ligand afhanklike transaktivering van 'n enkele GRE bevattende promotor verslaggewer konstruk te wees, terwyl ligand onafhanklike transaktivering van beide enkel-en veelvoudige GRE bevattende konstrukte aansienlik toegeneem het as gevolg van toename in GR konsentrasie. Die endogene GC responsiewe glukokortikoïed geïnduseerde leusien rits (GILZ) gene het beduidende ligand onafhanklike transaktivering gedemonstreer op GR vlakke wat ligand onafhanklike dimerisering toon. 'n toename in GR konsentrasie het gelei tot toename in die effektiwiteit van al die promotor verslaggewer konstrukte, sowel as die endogene GILZ gene. Positiewe koöperatiewe ligand binding en die gepaardgaande toename in ligand bindings affiniteit van die GR by hoë vlakke kan 'n belangrike faktor wees in die bepaling van sowel die effektiwiteit as die potensie van die GC respons. As die aansienlike verskille in GR konsentrasies van verskillende weefsels en tussen verskillende individue in dieselfde weefsel in ag geneem word, kan ons bevindings die inter-individuele sowel as weefsel spesifieke response op GC behandeling verduidelik en stel dit 'n belangrike meganisme van aksie voor waardeur die GR voorberei word om op sub-versadigings konsentrasies van GC te reageer deur 'n beduidende vlak van ligand onafhanklike aktiwiteit te toon.
82

A Study of the Flow of Microgels in Patterned Microchannels

Fiddes, Lindsey 30 August 2011 (has links)
This work describes the results of experimental study of the flow of soft objects (microgels) through microchannels. This work was carried with the intention of building a fundamental biophysical model for the flow of neutrophil cells in microcirculatory system. In Chapter 1 we give a summary of the literature describing the flow of cells and “model cells” in microchannels. Paramount to this we developed methods to modify microchannels fabricated in poly(dimethyl siloxane) (PDMS). Originally, these microchannels could not be used to mimic biological microenvironments because they are hydrophobic and have rectangular cross-sections. We designed a method to create durable protein coatings in PDMS microchannels, as outlined in Chapter 3. Surface modification of the channels was accomplished by a two-step approach which included (i) the site-specific photografting of a layer of poly(acrylamide) (PAAm) to the PDMS surface and (ii) the bioconjugation of PAAm with the desired protein. This method is compatible with different channel geometries and it exhibits excellent longevity under shear stresses up to 1 dyn/cm. The modification was proven to be successful for various proteins of various molecular weights and does not affect protein activity. The microchannels were further modified by modifying the cross-sections in order to replicate cardiovascular flow conditions. In our work, we transformed the rectangular cross-sections into circular corss-sections. Microchannels were modified by polymerizing a liquid silicone oligomer around a gas stream coaxially introduced into the channel, as outlined in Chapter 3. We demonstrated the ability to control the diameter of circular cross-sections of microchannels. The flow behaviour of microgels in microchannels was studied in a series of experiments aimed at studying microgel flow (i) under electrostatic interactions (Chapter 4), (ii) binding of proteins attached to the microgel and the microchannel (Chapter 5) and (iii) under the conditions of varying channel geometry (Chapter 6). This work overall present’s new methods to study the flow of soft objects such as cells, in the confined geometries of microchannels. Using these methods, variables can be independently probed and analyzed.
83

The pharmacology of the sigma-1 receptor

Brimson, James M. January 2010 (has links)
The sigma-1 receptor, although originally classified as an opioid receptor is now thought of as distinct receptor class, sharing no homology with any other known mammalian protein. The receptor has been implicated with a number of diseases including cancer and depression. Modulation of the receptors activity with agonists has potential antidepressant activity whereas antagonists lead to death of cancer cells. Using radioligand binding assays, utilizing the cancer cell line MDA-MB-468, which highly expresses the sigma-1 receptor, a series of novel specific, high affinity, sigma-1 receptor ligands have been characterised. These ligands differed from any previous sigma- 1 receptor ligand in that they are very simple ammonium salts, containing a single nitrogen atom and either straight or branched carbon chains. The binding studies revealed that the straight-chain ammonium salts gave nH values of 1 whereas the branched-chain ammonium salts had statistically significant lower nH values. The ammonium salts were tested for sigma-1 receptor activity in vitro using ratiometric Fura-2 calcium assays and the MTS cell proliferation assay. Branched-chain ammonium salts appeared to have sigma-1 receptor antagonist like effects on cytoplasmic calcium and cell proliferation, whereas the straight-chain ammonium salts behaved as sigma-1 receptor agonists. Three ammonium salts stood out as potential effective sigma-1 receptor drugs, the straight-chain ammonium salt dipentylammonium, and two branched-chain ammonium salts, bis(2-ethylhexyl)ammonium and triisopentylammonium. The ammonium salts were then tested in vivo. Dipentylammonium showed significant antidepressant properties when tested in behavioural models for depression and bis(2-ethylhexyl)ammonium and triisopentylammonium were able to significantly inhibit the growth of tumours implanted in mice. Finally I looked at the coupling of the sigma-1 receptor with G-proteins and show that sigma-1 receptor antagonists dose dependently reduce G-protein activity and inhibition of G-proteins enhanced the sigma-1 antagonists' effects of calcium signalling.
84

Computational design of novel antipsychotics

Tehan, Benjamin, 1970- January 2003 (has links)
Abstract not available
85

The effects of structural modifications on sigma receptor binding

Xu, Rong, January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on December 18, 2007) Vita. Includes bibliographical references.
86

Rhenium(I) metal-to-ligand charge-transfer excited states containing sigma-bonded closo-dicarbadodecaboranes

Smithback, Michael T. January 2006 (has links)
Thesis (Ph. D.)--University of Wyoming, 2006. / Title from PDF title page (viewed on Dec. 21, 2007). Includes bibliographical references.
87

Examination of the signalling properties and ligand-binding potential of stimulatory leukocyte immune-type receptors (IpLITRs) in the channel catfish (Ictalurus punctatus)

Mewes-Ares, Jacqueline 11 1900 (has links)
Channel Catfish (Ictalurus punctatus, Rafinesque, 1818) leukocyte immune-type receptors (IpLITRs) are a family of proteins sharing structural and phylogenetic relationships with mammalian immune receptors. Based on their predicted signalling potential and ligand-binding properties, IpLITRs may be important in the control of immune cell effector responses in fish. The main objectives of this thesis were to determine how stimulatory IpLITRs activate cells and to develop assays for the screening of IpLITR ligands. Using cellular transfections, coimmunoprecipitation, and flow cytometry, I determined that stimulatory IpLITRs associate with specific adaptor molecules, which is required for their surface expression and signalling ability. These adaptors assemble with IpLITRs via their charged transmembrane regions and contain cytoplasmic tails encoding tyrosines that may initiate kinase pathways leading to immune cell activation. This study represents the first step towards elucidating how IpLITRs turn on immune cells. Combined with the development of assays to identify IpLITR ligands, my work sets the stage for further investigations into the functional characterization of these receptors. / Physiology, Cell and Developmental Biology
88

Mass Spectrometry-Based Strategies for Multiplexed Analyses of Protein-Ligand Binding Interactions

DeArmond, Patrick D. January 2011 (has links)
<p>The detection and quantitation of protein-ligand binding interactions is important not only for understanding biological functions but also for the characterization of novel protein ligands. Because protein ligands can range from small molecules to other proteins, general techniques that can detect and quantitate the many classes of protein-ligand interactions are especially attractive. Additionally, the ability to detect and quantify protein-ligand interactions in complex biological mixtures would more accurately represent the protein-ligand interactions that occur in vivo, where differential protein expression and protein complexes can significantly affect a protein's ability to bind to a ligand of interest.</p><p> The work in this dissertation is focused on the development of new methodologies for the detection and measurement of protein-ligand interactions in complex mixtures using multiplex analyses. Methodologies for two types of multiplexed analyses of protein-ligand binding interactions are investigated here. The first type of multiplex analysis involves characterizing the binding of one protein target to many potential ligands, and the second type involves characterizing the binding of one ligand to many proteins. The described methodologies are derived from the SUPREX (stability of unpurified proteins from rates of H/D exchange) and SPROX (stability of proteins from rates of oxidation) techniques, which are chemical modification strategies that measure thermodynamic stabilities of proteins using a relationship between a protein's folding equilibrium and the extent of chemical modification. These two techniques were utilized in the development and application of several different experimental strategies designed to multiplex the analysis of protein-ligand interactions.</p><p> The first strategy that was developed involved a pooled compound approach for making SUPREX-based measurements of multiple ligands binding to a target protein. Screening rates of 6 s/ligand were demonstrated in a high-throughput screening project that involved the screening of two chemical libraries against human cyclophilin A (CypA), a protein commonly overexpressed in types of cancer. This study identified eight novel ligands to CypA with micromolar dissociation constants. Second, an affinity-based protein purification strategy was developed for the detection and quantitation of specific protein-ligand binding interactions in the context of complex protein mixtures. It involved performing SPROX in cell lysates and selecting the protein of interest using immunoprecipitation or affinity tag purification. A third strategy developed here involved a SPROX-based stable isotope labeling method for measuring protein-ligand interactions in multi-protein mixtures. This strategy was used in a proof-of-principle experiment designed to detect and quantify the indirect binding between yeast cyclophilin and calcineurin in a multi-component protein mixture. Finally, a quantitative proteomics platform was developed for the detection and quantitation of protein-ligand binding interactions on the proteomic scale. The platform was used to profile interactions of the proteins in a yeast cell lysate to several ligands, including the bioactive small molecules resveratrol and manassantin A, the cofactor nicotinamide adenine dinucleotide (NAD+), and two proteins, phosphoglycerate kinase (Pgk1) and pyruvate kinase (Pyk1). The above approaches should have broad application for use as discovery tools in the development of new therapeutic agents.</p> / Dissertation
89

Fluorescent GFP chromophores as potential ligands for various nuclear receptors

Duraj-Thatte, Anna 18 May 2012 (has links)
Nuclear receptors are ligand activated transcription factors, where upon binding with small molecule ligands, these proteins are involved in the regulation of gene expression. To date there are approximately 48 human nuclear receptors known, involved in multiple biological and cellular processes, ranging from differentiation to maintenance of homeostasis. Due to their critical role in transcriptional regulation, these receptors are implicated in several diseases. Currently, 13% of prescribed drugs in the market are NR ligands for diseases such as cancer, diabetes and osteoporosis. In addition to drug discovery, the mechanism of function, mobility and trafficking of these receptors is poorly understood. Gaining insight into the relationship between the function and /or dysfunction of these receptors and their mobility will aid in a better understanding of the role of these receptors. The green fluorescent protein (GFP) has revolutionized molecular biology by providing the ability to monitor protein function and structure via fluorescence. The fluorescence contribution from this biological marker is the chromophore, formed from the polypeptide backbone of three amino acid residues, buried inside 11-stranded â-barrel protein. Synthesis of GFP derivatives of is based on the structure of the arylmethyleneimidazolidinone (AMI), creating a molecule that is only weakly fluorescent. Characterizing these AMI derivatives for other proteins can provide a powerful visualization tool for analysis of protein function and structure. This development could provide a very powerful method for protein analysis in vitro and in vivo. Development of such fluorescent ligands will prove beneficial for the nuclear receptors. In this work, libraries of AMIs derviatives were synthesized by manipulating various R groups around the core structure, and tested for their ability to serve as nuclear receptor ligands with the ability to fluoresce upon binding. The fluorogens are developed for steroidal and non-steroidal receptors, two general classes of nuclear receptors. Specific AMIs were designed and developed for steroid receptor estrogen receptor á (ERá). These ligands are showed to activate the receptor with an EC50 of value 3 ìM and the 10-fold activation with AMI 1 and AMI 2 in comparison to the 21-fold activation observed with natural ERá ligand, 17â-estradiol. These novel ligands were not able to display the fluorescence upon binding the receptor. However, fluorescence localized in nucleus was observed in case of another AMI derivative, AMI 10, which does not activate the receptor. Such ligands open new avenues for developing fluorescent probes for ERá that do not involve fluorescent conjugates attached to a known ERá ligand core. AMIs were also characterized for non-steroidal receptors,specifically the pregnane x receptor (PXR) and retinoic acid receptor á (RARá). To date, fluorogens which turn fluorescence upon binding and activate the receptor have not been developed for these receptors. With respect to PXR, several AMI derivatives were discovered to bind and activate this receptor with a fold-activation better than the known agonist, rifampicin. The best characterized AMI derivative, AMI 4, activates the receptor with an EC50 of value 6.3 ìM and the 154-fold activation in comparison to the 90-fold activation and an EC50 value of 1.3 ìM seen with rifamipicin. This ligand is not only able to activate PXR but also displays fluorescence upon binding to the receptor. The fluroscence pattern was observed around the nucleus. Besides AMI 4, 16 other AMI derivatives are identified that activate PXR with different activation profiles. Thus, a novel class of PXR ligands with fluorescence ability has been developed. The AMI derivatives able to bind and activate RAR, also displayed activation profiles that were comparable to the wild-type ligand, all trans retinoic acid. These ligands activated the receptor with an EC50 value of 220 nM with AMI 109 in comparison to an EC50 value of 0.8 nM with the natural ligand for RARá. When these ligands were tested for fluorescence in yeast, the yeast were able to fluoresce only in the presence of the receptor and the AMI derivative, indicating that these agonists also have the ability to fluoresce.
90

Conformational Ensemble Generation via Constraint-based Rigid-body Dynamics Guided by the Elastic Network Model

Borowski, Krzysztof January 2011 (has links)
Conformational selection is the idea that proteins traverse positions on the conformational space represented by their potential energy landscape, and in particular positions considered as local energy minima. Conformational selection a useful concept in ligand binding studies and in exploring the behavior of protein structures within that energy landscape. Often, research that explores protein function requires the generation of conformational ensembles, or collections of protein conformations from a single structure. We describe a method of conformational ensemble generation that uses joint-constrained rigid-body dynamics (an approach that allows for explicit consideration of rigidity) and the elastic network model (providing structurally derived directional guides for the rigid-body model). We test our model on a selection of unbound proteins and examine the structural validity of the resulting ensembles, as well as the ability of such an approach to generate conformations with structural overlaps close to the ligand-bound versions of the proteins.

Page generated in 0.0606 seconds