• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 907
  • 176
  • 71
  • 52
  • 37
  • 26
  • 24
  • 19
  • 12
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1584
  • 386
  • 297
  • 278
  • 254
  • 177
  • 145
  • 139
  • 119
  • 107
  • 106
  • 94
  • 89
  • 79
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Ligand design and mechanism in hydroformylation

Kent, A. G. January 1981 (has links)
In this work the synthesis of new potentially trans-chelating biphosphine ligands is described and their value in rhodium catalysed hydroformylation evaluated. The reactions of biphosphine diolefin rhodium complexes with hydrogen in methanol, monitored by <sup>1</sup>H- and <sup>31</sup>P-NMR spectroscopy were used to determine trans-chelating ability. Complexes of 1,5-bis(diphenylphosphino)-3-oxapentane and 1,3-bis- (4-diphenylphosphinobenzyl)benzene formed rhodium dihydrides solely whereas the more flexible 1,7-bis(diphenylphosphino)-4-oxaheptane gave isomeric rhodium dihydrides and a solvate complex. The reaction of diolefin complexes with hydrogen and carbon monoxide in dichloromethane was also investigated. The 3-oxapentane ligand, readily synthesized from 3-oxapentane-1,5-diol, as its rhodium complex gave a n—/iso aldehyde ratio of 9:1 for 1-octene hydroformylation (100°, 80 psi, 1:1 hydrogen/carbon monoxide). Secondly, reactive intermediates relevant to hydroformylation were identified using <sup>13</sup>C- and <sup>2</sup>H-labelling and <sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P-NMR spectroscopy. Hydridocarbonylbis(triphenylphosphine)rhodium(I), the probable catalytic cycle initiator, was conclusively shown to be the initial product of hydridocarbonyltris(triphenylphosphine)rhodium(I) under hydroformylation conditions. The kinetics of interconversion of these latter two complexes were examined by saturation transfer <sup>31</sup>P-NMR. On reaction of the dicarbonyl complex with styrene no alky1-rhodium complexes were observed, but an iso-acyl intermediate which isomerizes rapidly at ambient temperature was identified and a structure proposed. A similar n-acyl complex, from 1-octene, shows dynamic NMR behaviour explained in terms of triphenylphosphine isomerization at lower temperature and acyl-alkyl interconversion at high temperature.
132

The synthesis and characterisation of novel 16-membered tetraazamacrocycles

Scott, Elinor L. January 1994 (has links)
No description available.
133

The regulation of cytosolic phospholipase A←2 gene expression

Maxwell, Alexander Peter January 1994 (has links)
No description available.
134

The application of novel multinuclear catalysts derived from dendrimeric ligands in the polymerization and oligomerization of unsaturated hydrocarbons.

Malgas, Rehana January 2007 (has links)
<p>G1 and G2 dendrimeric salicylaldimine ligands containing both substituted and unsubstituted aryl rings were synthesized via a Schiff base condensation of the appropriate salicylaldehyde and the peripheral amino groups of the corresponding G1 and G2 polypropyleneimine dendrimers. The new ligands were characterized using FTIR, 1H NMR and 13C NMR spectroscopy, elemental analysis and ESI mass spectrometry. The dendrimeric ligands were converted to multinuclear nickel complexes by reaction with nickelacetate. The metal complexes were characterized by FTIR spectroscopy, elemental analysis and ESI mass spectrometry.</p> <p>Some of the dendritic complexes were evaluated as catalyst precursors in the oligomerization of &alpha / -olefins such as ethylene and 1-pentene, using aluminium alkyls such as EtAlCl2 and modified methylaluminoxane (MMAO) as activators. All the dendrimeric catalysts evaluated are active in the oligomerization reactions. From the oligomerization results it was observed that there is a clear dendritic effect, in that both catalyst activity as well as selectivity are impacted by the dendrimer generation. In most cases it was observed that the second generation complexes show higher activity than the corresponding first generation complexes.</p> <p>The dendrimeric complexes were also evaluated as catalyst precursors in the vinyl polymerization of norbornene. In this case methylaluminoxane (MAO) were employed as an activator. Once again it was noted that a dendritic effect is operative, with second generation metallodendrimers having a higher activity than the first generation complexes.</p>
135

Studies of cobalt(III) complexes containing tripodal tetraamine ligands

McClintock, Lisa F, n/a January 2008 (has links)
The new Co(III) carbonate complexes [Co(uns-penp)(O₂CO)]ClO₄�H₂O and [Co(trpyn)(O₂CO)]ClO₄, containing tripodal tetraamine ligands, have been synthesised and characterised by microanalysis, �H, ��C and ⁵⁹Co NMR, mass spectrometry (MS) and UV-vis spectroscopy. In addition, the ⁵⁹Co NMR spectra have been obtained for two series of [Co(N₄)(O₂CO)]⁺ complexes containing aliphatic (N₄ = tren, baep, abap, trpn) and pyridyl (N₄ = tpa, pmea, pmap, tepa) tripodal tetraamine ligands and the complex [Co(dppa)(O₂CO)]⁺. The ⁵⁹Co NMR signal increases as [Delta] decreases, indicating there is less electron density at the Co(III) nucleus as the metal-ligand orbital overlap becomes poorer. A linear relationship was found to exist between the [Delta] for the individual complexes and their ⁵⁹Co NMR chemical shifts which follows the relationship: [Delta] = 29 174 + -0.89363 x [delta](⁵⁹Co) For the two series of [Co(N₄)(O₂CO)]+ complexes, plots of the magnetogyric ratio (γ) and [lambda][max] have y-intercepts that do not accurately correspond to the magnetogyric ratio of the bare cobalt nucleus (γ₀(Co)). This is due to the deviation of the complexes from pure octahedral symmetry. A fluxional process in the complex [Co(pmea)(O₂CO)]⁺ was investigated using variable temperate (VT) NMR. This was found to involve the inversion of a six-membered chelate ring about a pseudo mirror plane with a [Delta]G[double dagger] of 58 kJ mol⁻� at 25 �C. Mass spectra have been obtained for all the [Co(N₄)(O₂CO)]⁺ complexes, and these show a common fragmentation pattern for all the complexes except [Co(trpn)(O₂CO)]⁺, where CO₂ is lost from the molecular ion to give a [Co(N₄)O]⁺ adduct. Single crystal X-ray structural analyses were performed on [Co(abap)(O₂CO)]ClO₄ (orthorhombic, Pca2₁, a = 15.9744(11) Å, b = 8.6200(6) Å, c = 21.8568(15) Å, α = β = γ = 90�, Z = 8, R1 = 0.0350, wR2 = 0.0902), [Co(trpn)(O₂CO)]ClO₄�H₂O (monoclinic, P2₁/c, a = 11.9510(19) Å, b = 12.0740(19) Å, c = 12.917(2) Å, β = 117.56(4)�, α = γ = 90�, Z = 4, R1 = 0.0476, wR2 = 0.1188), [Co(tpa)(O₂CO)]ClO₄�2H₂O (triclinic, P-1, a = 16.2298(5) Å, b = 17.2291(5) Å, c = 17.3393(5) Å, α = 106.760(1)�, β = 92.809(1)�, γ = 108.004(1)�, Z = 8, R1 = 0.0349, wR2 = 0.0799), [Co(uns-penp)(O₂CO)]ClO₄�H₂O (triclinic, P-1, a = 6.7544(3) Å, b = 11.5523(5) Å, c = 12.3201(6) Å, α = 73.397(2)�, β = 89.749(2)�, γ = 84.551(2), Z = 2, R1 = 0.0277, wR2 = 0.0842) and [Co(trpyn)(O₂CO)]ClO₄ (monoclinic, P2₁/n, a = 12.2777(5) Å, b = 11.9322(4) Å, c = 27.9622(11) Å, β = 100.082(2)�, α = γ = 90�, Z = 8, R1 = 0.0435, wR2 = 0.1130). Rates of acid hydrolysis of [Co(N₄)(O₂CO)]⁺ (N₄ = baep, abap, trpn, tpa, pmea, pmap, tepa, uns-penp, dppa, trpyn, Me₃-tpa) complexes were measured by stopped flow or UV-vis spectroscopy (I = 1.0 mol L⁻�). The product of acid hydrolysis of [Co(pmea)(O₂CO)]⁺ has been indentified by X-ray crystallography as [Co(pmea)(OH₂)₂]�⁺ (triclinic, P-1, a = 9.7065(5) Å, b = 15.5645(8) Å, c = 11.5740(5) Å, α = 84.660(1)�, β = 123.255(1)�, γ = 104.283(1)�, Z = 2, R1 = 0.0402, wR2 = 0.1009). The acid hydrolysis reactions of the [Co(N₄)(O₂CO)]⁺ complexes containing aliphatic (N₄ = baep, abap, trpn) tripodal tetraamine ligands and [Co(tpa)(O₂CO)]⁺ and [Co(Me₃-tpa)(O₂CO)]⁺ have been investigated over the range [H₃O⁺] = 0.10 - 1.0 mol L⁻� Three processes were observed for the hydrolysis of [Co(baep)(O₂CO)]⁺, [Co(abap)(O₂CO)]⁺ and [Co(trpn)(O₂CO)]⁺ at all [H₃O⁺]. The first and second processes were thought to be [H₃O⁺] dependent, while the third was fit to a first order exponential decay and was [H₃O⁺] independent (k[obs] ~ 4.2 x 10⁻� s⁻� for [Co(baep)(O₂CO)]⁺, 3.8 x 10⁻� s⁻� for [Co(abap)(O₂CO)]⁺ and 3.5 x 10⁻� s⁻� for [Co(trpn)(O₂CO)]⁺). However, none of the processes could be confidently assigned to a step in the acid hydrolysis mechanism. The data obtained from the studies of [Co(tpa)(O₂CO)]⁺ and [Co(Me₃-tpa)(O₂CO)]⁺ showed a single first order [H₃O⁺] dependent process which was fit to the following expression: k[obs] = (k₁K[H₃O]⁺)/(1 + K[H₃O]⁺ This gave k₁ = 5.8 x 10⁻⁴ � 2.3 x 10⁻⁴ s⁻� and K = 0.13 � 0.06 L mol⁻� for [Co(tpa)(O₂CO)]⁺ at 25 �C and k₁ = 6.0 x 10⁻⁵ � 2.0 x 10⁻⁶ s⁻� and K = 0.38 � 0.02 L mol⁻� for [Co(Me₃-tpa)(O₂CO)]⁺ at 50 �C. Both values of K indicate that protonation of chelated carbonate is far from complete at [H₃O⁺] = 1.0 mol L⁻�. Comparative rates of acid hydrolysis at [H₃O⁺] = 6.0 mol L⁻� were obtained for the complexes [Co(tpa)(O₂CO)]⁺ (k[obs] = 1.79 x 10⁻� s⁻�, 25 �C), [Co(pmea)(O₂CO)]⁺ (k[obs] = 1.8 x 10⁻⁵ s⁻�, 25 �C), [Co(pmap)(O₂CO)]⁺ (k[obs] = 2.5 x 10⁻⁵ s⁻�, 50 �C), [Co(tepa)(O₂CO)]⁺ (k[obs] = 4.3 x 10⁻⁵ s⁻�, 25 �C) and [Co(trpyn)(O₂CO)]⁺ (k[obs] = 1.3 x 10⁻⁴ s⁻�, 50 �C) and at [H₃O⁺] = 1.0 mol L⁻� for the complexes [Co(uns-penp)(O₂CO)]⁺ (k[obs] = 2.9 x 10⁻� s⁻�, 25 �C) and [Co(dppa)(O₂CO)]⁺ (k[obs] = 2.7 x 10⁻⁴ s⁻�, 25 �C). The vast differences in the rates of acid hydrolysis can be rationalised on a steric basis. Bulkier ancillary ligands impede the direct protonation of an endo oxygen atom, or the transfer of a proton from the exo to an endo oxygen atom. The chelated bicarbonate complex [Co(trpyn)(O₂COH)]ZnCl₄�3H₂O has been synthesised and characterised by microanalysis and X-ray crystallography (orthorhombic, Pbca, a = 18.1820(66) Å, b = 14.7256(44) Å, c = 19.6344(68) Å, α = β = γ = 90�, Z = 8, R1 = 0.0435, wR2 = 0.1130). The first products of direct metallion of coordinated carbonate, under both acidic and neutral conditions, have been isolated and characterised by microanalysis and IR spectroscopy. The X-ray crystal structures of the bimetallic complexes [Co(Me-tpa)O₂COZnCl₃]�H₂O (triclinic, P-1, a = 8.262(1) Å, b = 11.290(1) Å, c = 13.766(2) Å, α = 95.314(4)�, β = 103.160(4)�, γ = 107.071(5)�, Z = 2, R1 = 0.0382, wR2 = 0.0940) and [Co(pmea)O₂COZnCl₃]�H₂O (triclinic, P-1, a = 8.2916(7) Å, b = 11.0999(11) Å, c = 14.0994(13) Å, α = 8.2916(7)�, β = 102.607(4)�, γ = 108.600(4)�, Z = 2, R1 = 0.0347, wR2 = 0.0770), and the trimetallic complex [(Co(trpyn)(O₂CO))₂Zn(H₂O)̀₄](ZnCl₄)₂�3H₂O (monoclinic, P2₁/c, a = 20.9734(17) Å, b = 17.3712(12) Å, c = 15.7635(13) Å, β = 111.376(4)�, α = γ = 90�, Z = 4, R1 = 0.0235, wR2 = 0.0517) have been obtained. In addition, the X-ray crystal structures of the complexes [Co(trpyn)(O₂CO)](Zn(OH)₂Cl₃)�4H₂O (triclinic, P-1, a = 7.4962(7) Å, b = 13.4019(11) Å, c = 13.6887(11) Å, α = 74.631(4)�, β = 82.893(4)�, γ = 82.324(4)�, Z = 2, R1 = 0.0268, wR2 = 0.0638) and [Co(tepa)(O₂CO)]₂(ZnCl₄)�3H₂O (triclinic, P-1, a = 9.9250(10) Å, b = 15.5561(13) Å, c = 15.8730(16) Å, α = 89.545(4)�, β = 85.019(5)�, γ = 72.714(4)�, Z = 2, R1 = 0.0291, wR2 = 0.0722) were obtained. These two complexes were synthesised under analogous conditions to the bi- and trimetallic complexes. However, in these cases metallation of chelated carbonate did not occur. DFT calculations have been used to calculate the relative energies of pairs of geometric isomers of [Co(N₄)(O₂CO)]⁺ complexes (N₄ = baep, abap, pmea, pmap, dppa, Me-tpa, Me₂-tpa). In all cases, except that of [Co(Me-tpa)(O₂CO)]⁺, the calculations correctly predict that the experimentally observed isomer is lower in energy. An electronic study on two series of [Co(N₄)(O₂CO)]⁺ complexes containing pyridyl (N₄ = tpa, pmea, pmap, tepa) and Me-pyridyl (N₄ = tpa, Me-tpa, Me₂-tpa, Me₃-tpa) tripodal tetraamine ligands correctly reproduces the observed trends in ⁵⁹Co NMR chemical shift and [Delta] values. A molecular orbital analysis of the two series of complexes shows that there is no significant difference between the highest energy occupied orbitals with the largest contribution from the coordinated oxygen atoms. Bond decomposition analyses of the two series of complexes indicate that there is also no difference in total bond energies. These results indicate that there is no electronic explanation for the large differences in reactivity towards acid that is observed experimentally. The first mononuclear complex containing chelated hydrogen phosphate, [Co(pmea)(O₂PO₂H)]ClO₄, has been synthesised and characterised using microanalysis, �H, ��C, ��P and ⁵⁹Co NMR, UV-vis spectroscopy and X-ray crystallography (monoclinic, P2₁/c, a = 8.7017(17) Å, b = 27.639(5) Å, c = 9.586(2) Å, β = 112.818(9)�, α = γ = 90�, Z = 4, R1 = 0.0443, wR2 = 0.1076). The X-ray crystal structure of [Co(pmeaH)(OH₂)Cl₂](CoCl₄)�H₂O (orthorhombic, P2₁2₁2₁, a = 12.6354(3) Å, b = 12.6354(3) Å, c = 15.8261(11) Å, α = β = γ = 90�, Z = 4, R1 = 0.0397, wR2 = 0.0954), in which the pmea ligand is coordinated in a hypodentate fashion, was also obtained. [Co(pmeaH)(OH₂)Cl₂](CoCl₄)�H₂O is thought to be an impurity in crude samples of [Co(pmea)Cl₂]Cl. The pK[a] of [Co(pmea)(O₂PO₂H)]⁺ was determined to be 4.99 � 0.02 by potentiometric titration. A ring inversion fluxional process, analogous to that observed for [Co(pmea)(O₂CO)]⁺, was found by VT-NMR to have a [Delta]G[double dagger] of 60 kJ mol⁻� at 35 �C. A ��P NMR spectrum, taken after the solution was left standing for approximately three hours, showed evidence of cleavage of the hydrogen phosphate chelate via a bimetallic hydrolysis mechanism. Attempts were also made to synthesise Co(III) complexes containing chelated phosphate ester ligands (monomethyl phosphate and monophenyl phosphate), with pmea as the ancillary ligand. ��P NMR spectra of the crude samples indicate that the monomethyl phosphate moiety is chelated to Co(III) (��P [delta] = 21.05 ppm). However, it is unclear whether the monophenyl phosphate is chelated or bridging between two Co(III) ions (��P [delta] = 14.36 ppm).
136

Supramolecular complexes of multimodal ligands

Black, Cory A., n/a January 2007 (has links)
This thesis describes the synthesis and X-ray crystallographic analysis of a series of supramolecular architectures prepared using seven flexible multimodal ligands with Ag(I), Cu(I), Cd(II), Co(II), Ni(II) and Pd(II) metal salts. Chapter one introduces some examples of fundamental supramolecular systems with particular focus on metallo-supramolecular motifs, specifically coordination polymers. Topological analysis is discussed as a method for the simplified description and comparison of network structures. Chapter two describes the design, synthesis and characterisation of the symmetrical ligands bis(2-pyrazylmethyl)sulfide (psp), bis(4-pyrimidylmethyl)sulfide (msm) and 5,5�-(thiodimethylene)di-pyrazine-2-carboxylic acid methyl ester (csc) as well as the asymmetrical ligands 2-benzylsulfanylmethyl-pyrazine (psb), 2-pyridylsulfanylmethyl-pyrazine (psd), 3-pyridylsulfanylmethyl-pyrazine (psn) and 4-pyridylsulfanylmethyl-pyrazine (psy). Chapter three presents a literature review of ligands related to psp, msm and csc, followed by the synthesis and characterization of thirteen Ag(I), Cd(II), Co(II), Ni(II) and Pd(II) complexes. The X-ray crystal structures of nine of these complexes are reported and compared. The structures were present as either one- or two-dimensional coordination polymers. The {[Ag(psp)](PF₆)}[infinity] and {[Ag₂(psp)(C₆H₆)(CH₃CN)₂](PF₆)₂�CH₃CN}[infinity] structures demonstrated a solvent dependence by forming a 1-D twisted ladder with a [eta]�-bound benzene and a 2-D undulating sheet with a 4.8� topology respectively. Six of the structures {[Cd₂(psp)(CH₃CN)(H₂O)(NO₃)₄]�H₂O}[infinity], {[Co(psp)(CH₃CN)₂](ClO₄)₂}[infinity], {[Ni(psp)(NO₃)₂]}[infinity] and {[Ag(msm)](X)}[infinity] (X = BF₄⁻, ClO₄⁻, PF₆⁻) displayed anion-[pi] interactions between multi-atomic anions and [pi]-acidic ring centres. A novel N[pz]���cent[pz] T-shaped [pi]-[pi] interaction was also identified in the {[Ni(psp)(NO₃)₂]}[infinity] structure. A 2-D sheet with 6� topology was observed in the X-ray structure of {[Ag₂(csc)](NO₃)₂}[infinity]. Following a review of related ligands, chapter four focuses on seven Ag(I), Cd(II), Co(II) and Cu(I) complexes formed using the asymmetric pyrazine-benzene ligand psb. In total six 1-D coordination polymer chains are reported. Two structurally disparate supramolecular isomers were formed in [Ag(psb)NO₃][infinity] and {[Ag₂(psb)₂NO₃]NO₃�H₂O}[infinity]. The compound {[Ag(psb)](BF₄)}[infinity] was similar to the former isomer [Ag(psb)NO₃][infinity]. The structurally similar coordination polymers {[Cd(psb)(H₂O)(NO₃)₂]}[infinity] and {[Co(psb)(H₂O)₃](ClO₄)₂�H₂O}[infinity] formed structures that showed anion-[pi] interactions using coordinated and non-coordinated anions respectively. The [Cu₂(psb)I₂][infinity] chain consisted of ligands linked together by a Cu₄I₄ stepped cubane tetramer. Chapter five presents seventeen Ag(I) and Cu(I) complexes prepared using three asymmetric pyrazine-pyridine ligands psd, psn and psy. A review of asymmetric pyrazine-pyridine ligands is provided. Seventeen X-ray crystal structures are described. Four psd complexes using AgBF₄, AgClO₄, AgNO₃ and AgPF₆ crystallised as discrete dimers with three types of crystal packing and ligand-supported Ag���Ag interactions. The complexes {[Ag₂(psd)₂CF₃SO₃]CF₃SO₃}[infinity] and {Cu₂(psd)I₂}[infinity] were a 1-D X-shaped chain and a 2-D 6� net respectively. The isostructural 2-D sheets in {[Ag(psn)]ClO₄}[infinity] and {[Ag(psn)]PF₆�CH₃CN}[infinity], had 4.8� topologies whereas a thicker sheet was formed in {[Ag₂(psn)₂](BF₄)₂}[infinity] with a complicated (4�.6�.8�)₂(4.6.8)₂ topology. The {[Ag₃(psn)₂](CF₃SO₃)₃�CH₃CN}[infinity] chain polymer displayed three different coordination geometries around the three Ag(I) centres with two ligand-unsupported Ag���Ag interactions. The complex [Cu₂(psn)₂I₂] crystallised as a discrete dimer with a different ligand arrangement than those found in the psd dimers. Six Ag(I) 3-D networks were formed using psy. The complexes {[Ag(psy)]X}[infinity] (X = BF₄, ClO₄, PF₆) formed as isostructural non-interpenetrated (10,3)-d networks. An unprecedented tri-nodal (4.6.8)₂(6.8�)₂(4.6.8�.10)₂ topology was observed in the {[Ag₂(psy)₂](CF₃SO₃)₂}[infinity] structure. The suprarmolecular isomers {[Ag₃(psy)₂(NO₃)₂]NO₃]}[infinity] and {[Ag₃(psy)₂(NO₃)₃]�H₂O}[infinity] formed inclined interpenetrated 6� sheets and a (4�.6)₂(4⁴.6�.8⁸.10) 3-D network respectively. The structures in this chapter showed a general trend of increasing dimensionality when progressing from psd to psn to psy. Chapter six presents a summary of the more significant results and concluding remarks.
137

The dynamics of ligand exchange processes on magnesium (II), scandium (III) and yttrium (III) ions / by Dino Luigi Pisaniello

Pisaniello, Dino Luigi January 1980 (has links)
Typescript (photocopy) / x, 152 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.) Dept. of Physical and Inorganic Chemistry, University of Adelaide, 1981
138

Identification of metal ligands in amicyanin, hemocyanin, and catalase by resonance raman spectroscopy /

Sharma, Kamala Devi, January 1988 (has links)
Thesis (Ph. D.)--Oregon Graduate Center, 1988.
139

Organochromium chemistry with formally neutral, chelating ancillary ligands

Kreisel, Kevin Allen. January 2008 (has links)
Thesis (Ph. D.)--University of Delaware, 2007. / Principal faculty advisor: Klaus H. Theopold, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
140

A study on metal ion complexation with a macrocyclic ligand : a thermodynamic, kinetic, and mechanistic investigation /

Dey, Benu Kumar. January 1991 (has links) (PDF)
Thesis (M. Sc.)--University of Adelaide, Dept. of Physical and Inorganic Chemistry, 1995. / Includes bibliographical references (leaves 143-153).

Page generated in 0.0546 seconds