Spelling suggestions: "subject:"iigands."" "subject:"igands.""
181 |
Complexes with group V donorsKerfoot, D. G. E. January 1967 (has links)
No description available.
|
182 |
Experiments with polydentateHowell, I. V. January 1967 (has links)
No description available.
|
183 |
Metal complexes of polydentate ligandsMcAuliffe, Charles Andrew January 1967 (has links)
No description available.
|
184 |
Isolation, purification and effect of ligands on the nicotinic cholinergic receptorKapp, Eugene Anthony January 1989 (has links)
The nicotinic cholinergic receptor protein of the fish electric organ, Torpedo fuscomaculata, has been isolated, purified and shown to represent a true model for the nAChR from other species and higher vertebrates. It is an integral membrane protein composed of four different subunits, tightly associated with other functional, but non-specific proteins. Purification of the nicotinic cholinergic receptor by chromatofocusing demonstrates an improved method over that of affinity and ion-exchange chromatography. Gel chromatography and SDS-polyacrylamide gel electrophoresis show evidence of four subunits; a(40-44 kDa), 6(53 kDa ),'Y(63 kDa) and 6(66 kDa) despite some degradation of receptor molecules by intracellular proteases. Spectrophotometric and fluorimetric studies of receptor-ligand interactions, show the functional and chemical integrity of the receptor to remain intact after solubilisation. The effect of cholinergic ligands on purified receptor preparations indicate quenching of the intrinsic fluorescence of the receptor. Agonists, like acetylcholine, bind and cause local conformational transitions, changing the active region from a hydrophobic to a hydrophilic environment. This phenomenon is illustrated by the 10-fold increase in fluorescence when the receptor is in a desensitised state. Antagonists, such as d-Tubocurarine, block this conformational transition. In vitro rectus abdominis muscle preparations . show the nitrosamines, dimethylnitrosamine and diphenylnitrosamine, to be true agonists of the nAChR. However their low affinity and specificity for the receptor precludes them as photoaffmity labelling agents. Photoactivation of dimethylnitrosamine occurs when associated with an acidic hydrogen at the active site of the receptor, suggesting energy-transfer labelling to be more facile than photoaffmity labelling. The membrane-bound receptor, in the presence of these nitrosamines, undergoes conformational transitions regulating the opening and closing of the ion-channel. Desensitisation and receptor activation are shown to involve one and the same molecular transition.
|
185 |
Design, synthesis and evaluation of novel, metal complexing agentsHagemann, Justin Philip January 1997 (has links)
Various chelating ligands have been designed and synthesised; these include amino-amide ligands, tetraacetic acid systems and sulfur-containing amide ligands. Difficulties in the synthesis and purification of the amino-amide ligands were largely overcome, permitting the mono acylation of ethylenediamine and the synthesis of bis(2-aminoethyl)-2-benzylpropanediamide. Novel tetraacetic acid ligands, based on the propanediamide backbone and targeted as EDTA analogues, were obtained from their methyl and benzyl esters; but the instability of the tetraacids prevented their full characterisation. Bidentate, tridentate and tetradentate sulfur-containing monoamide ligands, based on the ortho-thio acetanilide moiety, were designed to specifically chelate platinum and palladium in the presence of base metals. In their synthesis, thiocyanation was used to introduce the orth-thio group on para-substituted anilines, and further functionalisation was achieved via appropriate protection of nucleophilic sulfur moieties. A range of tetradentate, sulfur-containing diamide ligands was also synthesised by reacting substituted 2-mercaptoacetanilides with 1,2- dibromoethane. Novel ligands were characterised by spectroscopic (¹H and ¹³C NMR; IR and M S) techniques and elemental (combustion and high resolution MS) analysis. Computer modelling and ¹H NMR chemical shift data have been used to explore the conformational preferences of the sulfur-containing acetanilide ligands. The macrocyclic ligands and systems with ortho-methylthio substituents appear to exhibit the greatest degree of coplanarity of the aromatic and amide functions. Solvent extraction studies revealed that the sulfur-containing amide ligands selectively extracted palladium(II) from platinum(II), copper(II}, nickel(II} and cobalt(II}. Even though the palladium(II} was extracted from an acidic medium, certain monoamide ligands were able to complex palladium(II) through their sulfur and deprotonated amide nitrogen donors, a trithia monoamide ligand being observed to displace all the chloride ligands on palladium to form a monomeric tetracoordinate complex. The diamide ligands, however, appeared to favour extraction of palladium(II) by coordination through their sulfur donors, forming 5-membered sulfur-sulfur chelates. In basic media (pH 8-9), selected sulfur-containing monoamide and diamide ligands have been shown to complex platinum(II) and palladium(II) through their sulfur and deprotonated amide nitrogen donors. At neutral pH, a dimercapto monoamide ligand has been shown to complex platinum from cisplatin with partial expulsion of the ammine ligands, while a macrocyclic trithia monoamide ligand has been observed to complex platinum from tetrachloroplatinate with concomitant deprotonation of the amide nitrogen. Where possible, the complexes were characterised by infrared and ¹H NMR spectroscopy and have also been studied using the computer modelling soft-ware programmes, Momec® and Hyperchem®.
|
186 |
Synthesis, characterization and antimicrobial activity of copper (II) complexes of some hydroxybenzaldimines and their derivativesSobola, Abdullahi Owolabi January 2012 (has links)
This study focuses on the antimicrobial activity of Cu(II) complexes of some orthohydroxybenzaldimines and its derivatives. Four different categories of Schiff base ligands were prepared by condensing salicylaldehyde, o-vanillin, p-vanillin and vanillin with p- and osubstituted anilines; 1-aminonaphthalene; 2- and 3-aminopyridine; 2- and 3- aminomethylpyridine as well as 2-aminobenzimidazole. The last category was prepared from ophenylenediamine and o-vanillin. The Schiff base ligands have been characterized by a combination of elemental analysis and spectral (¹H- and ¹³C-NMR, UV/Visible, infrared and Raman) data. The existence of strong intramolecular hydrogen bonding in the orthohydoxybenzaldimines was evident from the chemical shift values of the hydroxyl proton in the ¹H-NMR spectra of the Schiff base ligands. The hydroxyl proton resonates at high frequency and thus absorbed far downfield at 13.46-11.83 ppm, reflecting the presence of hydrogen bonding between the hydroxyl proton and the imine nitrogen. In the p-substituted aniline analogues of the Schiff base, a plot of the chemical shift values of the hydroxyl proton against the Hammett's substituent parameters gave a linear correlation between the electronegativities of the substituents and the chemical shift values. The nitro group with the highest electronegativity caused the least deshielding of the hydroxyl proton and thus absorbed upfield compared to the less electronegative substituents such as the CH3 and OCH3 analogues. Likewise, in the solid state infrared spectra of the ligands, the hydroxyl stretching band of the ortho-hydroxyl Schiff base ligands was observed as a very broad band and at much lower frequency, 3100-2100 cm⁻¹, indicating the existence of strong intramolecular hydrogen bonding. In the same vein, ¹H- and ¹³C-NMR spectral data for the Schiff base ligands indicated that the prepared compounds exist in the enol form in aprotic solvent, chloroform. The methine proton appeared as singlet and there was no carbonyl signal in the ¹³C-NMR spectra of the Schiff base ligands. This was supported by the infrared data having no vibrational band attributable to the carbonyl stretching of the keto-form of the Schiff base ligands in solid state. However, the UV/Visible study of the Schiff base ligands in protic solvent, methanol, suggested the existence of some of the Schiff base ligands in keto-enol form. A band at greater than 400 nm was observed in the UV/Visible spectra of the ligands and this has been attributed to the presence of the keto form of orthohydroxyl Schiff base ligands in solution. A plot of the molar absorptivity (ε) of the band at greater than 400 nm against Hammett substituent parameters revealed that the intensity of the bands increased with the electronegativity of the substituents. The Cu(II) complexes of salicylaldehyde, o-vanillin and a few p-vanillin based Schiff base ligands are reported in this work. It was observed that introduction of Cu(II) ions into the ligand system resulted in the hydrolysis of the imine band in few cases. All the isolated complexes have been characterized by elemental analysis, conductivity measurement, infrared and UV/Visible spectral data. The structures of three of the Cu(II) complexes were further confirmed by X-ray single crystal diffraction. The Schiff base ligands either coordinated as neutral base through the imine nitrogen or via the imine nitrogen and the phenolic oxygen atoms. In addition, the benzimidazole-based and ovan-2-pico analogues equally coordinated through the imidazole N-3 nitrogen and the azine nitrogen respectively; thus acted as tridentate. In general, the synthesized Cu(II) complexes fell into seven categories viz: [Cu(LH)Cl(H₂O)]Cl; [Cu(LH)₂Cl₂].xH₂O; [CuL₂]; [Cu₂L₂]; [Cu(LH)Cl(H₂O)]Cl; and [MLCl]. The Cu(II) complexes of the form, M(LH)₂Cl₂.xH₂O were either 1:1 or non-electrolyte in methanol and DMF. The third category, CuL₂, was however, non-electrolyte existing as neutral four coordinate Cu(II) complexes. X-ray single crystal structure of Cu(II) complexes derived from the ammonia-based Schiff bases revealed a square planar geometry for the complexes and this agreed with the planar geometry that has been reported for Cu(II) complexes of N-arylsalicylaldimines of the type studied in this work. The complexes, [Cu₂L₂], resulted from the ortho-hydroxyaniline analogues and were polymeric with the Schiff base ligands coordinating to the Cu(II) ions as tridentate dibasic via the imine nitrogen, phenolic oxygen and the aminophenolic oxygen atoms. Cu(II) complexes prepared from ovan-2-ampy and ovan-2-pico Schiff bases were of the forms [Cu(LH)Cl(H₂O)]Cl and [CuLCl] respectively. The X-ray crystal structure of [Cu(ovan-2- pico)Cl] revealed a four-coordinate square planar geometry for the complex. In the same vein, the o-phenylenediamine complexes were of the form [Cu(L)(H₂O)], with the X-ray crystal structure of [Cu(bis-ovanphen)(H₂O)] revealing a square pyramidal geometry. The Schiff base ligands and the isolated Cu(II) complexes have been evaluated for their antimicrobial activity against three bacterial strains (Escherichia coli ATCC® 8739™*, Staphylococcus aureus subsp. aureus ATCC® 6538™* and Bacillus subtilis subsp. spizizeni ATCC® 6633™*) and one fungal strain, Candida albicans ATCC® 2091™*, using agar disc diffusion and broth dilution techniques. It was observed that the presence of the methoxyl group at the ortho-position of the aldehyde moiety of the Schiff base ligands enhanced the activity of the ligand tremendously and thus the o-vanillin analogues showed the highest potency against the tested organisms. In addition, the hydroxyaniline analogues were equally the most promising of all the substituted aniline based Schiff bases. The o-vanillin analogues of the aminopyridines and aminomethylpyridines also exhibited significant activity against the tested organisms. All the 2-aminobenzimidazole series were active against the tested organisms. It should be noted that E. coli was the least susceptible of all the microorganisms while the highest potency was exhibited against the fungus of choice, Candida albicans. Lastly, chelation of the Schiff base ligands with Cu(II) ions did not have significant influence on the activity of the free ligands.
|
187 |
Exploratory studies of novel ligand systemsTaylor, Steven John January 1992 (has links)
A range of novel ligand systems have been developed in three distinct phases and preliminary studies have been initiated to evaluate their complexation potential. Phase I incorporated the synthesis of single strand ligand systems, which were mainly based on amino acid residues. Techniques have been developed for the attachment of these ligand systems onto, firstly, a styrene monomer, and then later onto a pseudo-styrene linking group, viz. the p-toluoyl group. The linking reactions were based on the formation of amides or esters by the reaction of an acid chloride system with an amine or alcohol. Phase II involved the synthesis of bis-chain ligand systems and their attachment onto the p-toluoyl linking group. A further linking group was also developed at this stage, viz. the xylyl group. In the preparation of phase II ligand systems, use was made of malonic ester and iminodiacetic acid derivatives. Phase III has involved the synthesis of cyclic ligand systems, with skeletons based upon the structures used in phase I and phase II and two crown ether type systems have been prepared.
|
188 |
Rhenium complexes with pontentially multidentate ligands containing the amino, imino, hydroxy and thiol groupsMukiza, Janvier January 2016 (has links)
The chemistry of rhenium has received considerable interest due to its versatility in various catalytic applications, fixation and especially the potential use of 186Re and 188Re radionuclides in nuclear medicine. This study investigates the synthesis and characterisation of rhenium complexes with potentially multidentate ligands containing the amino, imino, hydroxyl and thiol groups. It reports new rhenium complexes in the +1, +3, +4 and +5 oxidation states, which display structural diversity, from monomers to ligand-bridged dimers as well as metal-metal multiply bonded dimers. The reaction of orotic acid (H2oa) and 2-mercapto-orotic acid (H2moa) with trans- [ReOX3(PPh3)2] (X = Cl, Br) were studied and led to the formation of ligand-bridged dimers with metal-metal multiple bonds i.e. (μ-Br)(μ-O)(μ-oa)[Re2 IVBr(OEt)2(PPh3)2], (μ-X)(μ-O)(μ-oa)[Re2 IVX2(OiPr)(PPh3)2] and (μ-Cl)(μ-O)(μ-moa)2[Re(PPh3)]2. The reaction of H2oa with [ReO2(py)4]Cl, [Re(dab)Br3(PPh3)2] (H2dab = 1,2- diaminobenzene) and [Re(CO)5Cl] were also studied and monomeric complexes [ReO(py)2(OEt)(oa)], [Re(dab)Br(oa)(PPh3)2] and (Ph4P)[Re(CO)3(H2O)(oa)] were isolated. The treatment of 5-amino-orotic acid (H2aoa) with [ReOBr3(PPh3)2] led to dimers with metal-metal triple bonds ReIV≡ReIV i.e. (μ-Br)(μ-O)(μ-oa)[Re2 IVBr(OEt)2(PPh3)2], (μ-Br)(μ-O)(μ-oa)[Re2 IVBr2(OiPr)(PPh3)2], as well as the monomer [ReV(apd)Br(aoa)(PPh3)2] (apd2− = 5-imidopyrimidine-2,4-dione). The chelating ligand 5-aminopyrimidine-2,4-dione (H2apd) was formed by oxorhenium(V)-catalysed decarboxylation of 5-amino-orotic acid (H2aoa) (see Scheme 1). The reaction of the Schiff base derivative of 5-amino-ortic acid, salicylimine-orotic acid (H2soa), with trans-[ReOI2(OEt)(PPh3)2] in ethanol was also investigated and led to the formation of the rhenium(III) complex salt [Re(coa)I(PPh3)2]I [Hcoa = 5-(2- hydroxybenzylideneamino)pyrimidine-2,4(1H,3H)-dione]. The chelating Hcoa is also formed from the oxorhenium(V)-catalysed decarboxylation of H2soa and coordinates to the rhenium(III) ion as a monoanionic tridentate N,O,O-donor chelate via the phenolate and ketonic oxygens, and the imino nitrogen atom. However, decarboxylation of H2soa was not observed in its reaction with [ReOCl3(PPh3)2], which led to the isolation of [ReOCl(soa)(PPh3)]. The reaction of the carboxamide derivative of 5-aminoorotic acid, 5-(5-aminopyrimidine-2,4(1H,3H)- dioxamido)-1,2,3,6-tetrahedro-2,6-dioxopyrimidine-4-carboxylic acid (H2ampa) with [Re(CO)5Cl] in ethanol led to the formation of a zwitterionic rhenium(I) complex [Re(CO)3(H2O)(amef)] [amef = {5-(5-ammoniumpyrimidine-2,4(1H,3H)-dioxamido)- 1,2,3,6-tetrahedro-2,6-dioxopyrimidine-4-ethylformate}]. The chelating ion amef was formed from the combined tricarbonylrhenium(I)-catalysed esterification and aminoprotonation of H2ampa (see Scheme 1) and coordinates to the fac-[Re(CO)3]+ core as a dianionic bidentate N,N-donor chelate via the amido nitrgens.
|
189 |
Synthesis and characterization of symmetrical and unsymmetrical ferrocenyl ligands for use in the preparation of Redox Active Ruthenium Alkylidene ComplexesSaku, Duduetsang January 2007 (has links)
Oxidation of a ferrocenyl group in conjugation to another metal centre can alter the electron density at that metal centre and lead to a change in overall reactivity of a complex. Herein, the synthesis and characterization of redox active symmetrical and unsymmetrical ferrocenylalkene derivatives is described. A change in the standard redox potential of ferrocene (465 mV), to more positive potentials in vinylferrocene 1 (478 mV) and 4-phenylvinylferrocene 3 (499 mV), showed how manipulation of a redox potential can be effected on the ferrocenyl moiety by just using conjugation effects. A shift by +13 mV is observed in 1 and this potential more than doubled in 3 (+34 mV). Ferrocenylderived ruthenium alkylidene complexes were also prepared in a cross metathesis of 1 and 3 with Grubbs’ 1 (676.5 mV) to give complexes Ferrocenylidenebis( tricyclohexylphosphine)dichlororuthenium 14, 4-ferrocenylphenylidene-bis (tricyclohexylphosphine)dichlororuthenium 15 respectively. The extent of the electronic communication between the ferrocenyl group and the ruthenium centre was then estimated by looking at the positive or negative redox potential shifts of 14 and 15 as a result of 1 and 3. A large positive potential shift by 180 mV in 14 indicated that there was a strong electronic communication between the two metal centres, while the smaller, yet significant positive potential shift by 89.5 mV in 15 showed 3 to have a lesser effect on the ruthenium centre. Compounds 14 and 15 were tested in a Ring Closing Metathesis (RCM) of diethyldiallylmalonate showed enhanced reactivity.
|
190 |
Synthesis and characterisation of oxorhenium(V) and tricarbonylrhenium(I) complexes with biologically active N, O and N, S-Donor ligandsMukiza, Janvier January 2013 (has links)
This study investigated the synthesis of rhenium(I) and rhenium(V) complexes with a variety of multidentate NS, NSO, NO and SO-donor ligands. It also investigated the synthesis of dinuclear dihalogeno- and trihalogeno-bridged rhenium(I) complexes based on the fac-[Re(CO)3]+ core. The reactions of hydrated folic acid with [Re(CO)5X] (X = Cl, Br) were studied, and the complexes [Re(CO)3(H2O)3]+[Re2(μ-X)3CO)6]−.5H2O [X= Br (1), Cl(2)] were isolated. The reaction of orotic acid potassium salt [Re(CO)5Br] was performed, and the complex [Re2(μ-Br)2(CO)8] was isolated. The reaction of bis(piperidin-1- yl)methanone with [Re(CO)5Cl] followed by recrystallisation of the resulting precipitate in dichloromethane/acetontrile resulted in the complex [Re2(μ- Cl)2(CO)6(MeCN)2]. The X-ray crystal structures show that all these complexes display a distorted octahedral geometry around the central rhenium atoms. The reactions of aroylhydrazone-based ligands such as 3-((pyridin- 2yl)methyleneamino)-2,3-dihydro-2-pyridin-2yl)quinazolin-4-(1H)-one (Hppq) and N-(di(pyridin-2-yl)methylene)benzohydrazide (Hdpmb) with [Re(CO)5Cl] were studied and led to the formation of the complexes [Re(CO)3Cl(Hdpmb)] and [Re(CO)3Cl(Hppq)]. The Hdpmb and Hppq coordinated to the fac-[Re(CO)3]+ core as neutral bidentate chalates via the pyridinic nitrogens (for Hdpmb) and via imino and pyridinic nitrogens for Hppq. The X-ray crystal structures show that the geometry around the rhenium in both complexes is a distorted octahedral. The treatment of the dithizone (H2dz) ligand with rhenium(V) precursors containing a triphenylphosphine group (PPh3) led to the decomposition of dithizone. The decomposition product reacted with the triphenylphosphine group and generated a new ligand triphenylphosphazeno-N-phenylmethanethiohydrazide (H2L). The reaction of trans-[ReOX3(PPh3)2] (X = Cl, Br) with dithizone (H2dz) led to the complex [ReO(dz)2][ReO(HL)2]. The reaction of trans-[ReOI2(OEt)(PPh3)2] with H2dz led to the same product. The reaction of cis-[ReO2I(PPh3)2] with H2dz in methanol led to [ReO(dz)2][ReO(HL)2](MeOH)2 in which methanol bonded to HLvia hydrogen bonds. The H2dz was doubly deprotonated and coordinated to the [ReO]3+ moiety via a thiolate sulfur and deprotonated hydrazinic nitrogen to yield [ReO(dz)2]−, while the H2L was singly deprotonated and coordinated to [ReO]3+ moiety via the neutral sulfur atom and deprotonated hydrazinic nitrogen to yield [ReO(HL)2]+. The X-ray crystal structure show that in both [ReO(HL)2]+ and [ReO(dz)2]−, the rhenium atoms are five-coordinated and adopt a distorted squarebased pyramidal geometry. The reaction of thiosemicarbazones such as salcylidene-4- phenylthiosemicarbazide (H3salpt) with cis-[ReO2I(PPh3)2] was investigated and led to the complex [ReO(Hsalpt)(H2salpt)]. The X-ray study reveals that Hsalpt is present as a tridentate chelate coordinating via the thiolate sulfur, imino nitrogen and phenolic oxygen, while H2salpt coordinates as a bidentate chelate via the thiolate sulfur and imino nitrogen atoms. The geometry around rhenium is distorted octahedral. The coordination mode of the benzoylthiourea derivatives 4-tert-butyl-N- (diphenylcarbamothioyl)benzamide (Htpb) and N-(diethylcarbamothioyl)benzamide (Heb) to the [Re2O3]4+ and fac-[Re(CO)3]+ cores were investigated. The reaction of [Re(CO)5Cl] in presence of sodium acetate with Htpb led to the dimeric complex [Re(CO)3(tpb)]2 in which the tpb coordinated to the fac-[Re(CO)3]+ core via the ketonic oxygen and bridging thiolate sulfur. The same reaction with Heb led to the monomeric complex [Re(CO)3(eb)(Heb)], in which the eb coordinates to the fac-[Re(CO)3]+core via thiolate sulfur and ketonic oxygen with Heb binding via the neutral sulfur atom. The reaction of Heb with cis-[ReO2I(PPh3)2] at room temperature with excess of sodium acetate led to the dimeric complex (μ-O)[ReO(eb)2]2 in which Heb is present as a monoanionic (deprotonated) bidentate with coordination through the thiolate sulfur and ketonic oxygen.
|
Page generated in 0.0512 seconds