• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 912
  • 176
  • 71
  • 52
  • 37
  • 26
  • 24
  • 19
  • 13
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1590
  • 386
  • 297
  • 278
  • 254
  • 177
  • 146
  • 139
  • 119
  • 107
  • 107
  • 94
  • 89
  • 79
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

The spectra of complexes of conjugated ligands

Sanders, Neil January 1968 (has links)
No description available.
562

Synthetic and analytical studies of biomimetic metal complexes

Wellington, Kevin Wayne January 2000 (has links)
Several series of novel diamido, diamino and diimino ligands containing different spacers and heterocyclic donors have been synthesised. The spacers include the flexible biphenyl, the rigid 1,1 O-phenanthroline and various acyclic moieties, while the heterocyclic donors comprise pyridine, imidazole or benzimidazole groups. These ligands have been designed to complex copper and act as biomimetic models of the active site of the enzyme, tyrosinase, and their complexes with copper, cobalt, nickel and platinum have been analysed using microanalytical, IR, UV-Visible and cyclic voltammetric techniques. Attempted reduction of the biphenyl-based diimino ligands resulted in an unexpected intramolecular cyclisation affording azepine derivatives, the structures of which were elucidated with the aid of single crystal X-ray analysis of cobalt and nickel complexes. Computer modelling methods have been used to explore the conformational options of the copper complexes, and to assess the accessibility of the dinuclear copper site to substrate molecules. Computer modelling has also been used, in conjunction with the available analytical data, to visualise the possible structures of selected ligands and complexes. The copper complexes, although predominantly polymeric, were evaluated as biomimetic catalysts using 3,5-di-t-butylphenol and 3,5-di-t-butylcatechol as substrates. Some of the complexes clearly displayed biomimetic potential, exhibiting both phenolase and catecholase activity.
563

Ligand isotope vibrational spectroscopic and DFT studies of Pt(II) and Cu(I) complexes

Medina, Gerardo Juan January 2005 (has links)
Ligand-isotope labelling studies were performed on Zeise’s salt derivatives with pyridine N-oxide and quinoline N-oxide, their perdeuterated and O-18 isotopomers, C₂D₄ and ¹³CO, and the results of the vibrational analyses are reported. The isotopomers are modelled utilizing DFT calculations at the B3LYP level with the 6-31 G** basis set, and a pseudopotential level for the Pt atom. The calculated and observed structure and vibrational spectra correlate well. The crystal structures of [Pt(C₂2H₄)(pyO)Cl₂] and [Pt(CO)(quinO)Br₂] are reported. The frequency for the νPt-O vibration, ambiguously assigned in the literature, is here assigned unequivocally at 400 cm⁻¹. Previously observed, but inadequately described phenomena are addressed: the νN-O vibration in substituted quinoline N-oxides has been assigned previously at significantly different frequencies, depending on the nature of the substituent. This suggests that there is no specific mid-ir band associated with a high N-O character. A suitable explanation is presented for this phenomenon, showing that in low symmetry systems (eg. quinO) the N-O stretch is dispersed among several modes, whereas in high symmetry systems (eg. pyO) only a few limited modes have a high N-O character. A theoretical study of Cu(I) carbonyl compounds with macrocyclic ligands is presented. Local and global HSAB parameters applied to the donor and Cu atoms are used to explain the observed reactivities and the available spectroscopic data. Extended to [Cu(CO){H₂N(CH₂)[subscript n]NH(CH₂)[subscript m] NH₂}] BPh₄ (where n = 2, m = 2, 3 and n =3, m = 3, 4) and their -d₅ and ¹³CO isotopomers, subtle differences obtained experimentally for the CO stretching frequency in this series have been reproduced in the DFT calculations at the B3LYP level, using the 6-31 G* and 6-31 G** basis sets. Several properties (ligand pK[subscript a] values, νCO frequencies, etc.) correlate with some HSAB descriptors. Vibrational analyses are presented of Cu(I) carbonyl Schiff-base derivatives of N-Benzylidene-N’-[2-(benzyilidene-amino)-ethyl]-ethane-1,2-diamine, {2,2N3(C₆H₄R)₂}, and their -d₅ and ¹³CO isotopomers. The crystal structure of [Cu(CO){2,2N3(C₆H₅)₂}]BPh₄ is reported. From geometry optimizations and the HSAB descriptors, spectroscopic trends ([n]Cu-N and [nu]CO) are related to calculated global hardness and the Hammett substituent parameters, and are discussed in terms of σ-donation and π-backbonding of Cu- CO.
564

Studies towards the synthesis of novel tridentate ligands for use in ruthenium metathesis catalysts

Millward, Tanya January 2009 (has links)
This work has focussed on the preparation of a variety of tridentate ligands, designed to form ruthenium complexes as potential metathesis catalysts. Various approaches to the tridentate, malonate-tethered imidazolidine system have been investigated, and a promising route to accessing ligands of this type is discussed. A tridentate malonate-tethered pyridine ligand has been successfully prepared and its dithallium salt has been accessed by hydrolysis with thallium carbonate; approaches to a longer-chain analogue have also been investigated. A thallium pyridine-2,6- dicarboxylate ligand has been has been successfully prepared, as have a range of pyridine diamine ligands, with various alkyl and aromatic substituents on the amine donor atoms. Preliminary investigations into the potential of these compounds as ligands for alkylidene ruthenium complexes are reported using molecular modelling techniques. The geometries and steric energies of the ligands and their corresponding complexes have been analysed, and results obtained from two different software packages are compared. Finally, some preliminary complexation studies have been undertaken.
565

Cytokine signalling functions of human soluble IgE receptors in peripheral blood mononuclear cells from normal and hyper-allergic individuals and in B-lymphoblastoid and monocytic cell lines

Askew, Sandra Lyn January 2006 (has links)
CD23 is a multifunctional receptor/ligand, found in a variety of cell types, such as human peripheral blood mononuclear cells (PBMCs), B-lymphoblastoid cell lines, mast cells and basophils. It is also found on a variety of haematopoietic cell lines. As the low-affinity receptor for immunoglobulin E (IgE), CD23 plays a role in antigen-presentation and macrophage activation. As a surface molecule cleaved from the cell membrane, soluble CD23 (sCD23) can act as an adhesion molecule and a cytokine. Perturbances of such molecular interactions may lead to various diseases such as allergies and other inflammatory diseases. It has been speculated that elevated levels of sCD23 may be used to bind secreted IgE, thus preventing it from binding to membrane CD23 on haematopoietic cells, preventing B cells from being activated into IgE producing cells. Signal transduction by sCD23 is dependent on cell subsets, ligands and co-factors required for its function. sCD23 plays a direct role in inducing tumour necrosis factor alpha (TNFα), interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) and soluble IL-1 receptor from activated human monocytes and PBMCs in vitro. Recombinant forms of 25 and 37 kDa human sCD23 were produced by polymerase chain reaction (PCR)-cloning into pET23a, a bacterial expression vector. The proteins were expressed and refolded, followed by purification by gel filtration chromatography. The purified proteins were biochemically characterized to ensure purity and biological activity, by observing the binding to human IgE both in enzyme-linked immunosorbant assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. ELISA showed KD values of 7.23 x 10-9M and 8.12 x 10-9M for the 25 and 37 kDa proteins, respectively. These values were significantly lower than that of Hibbert et al., (2005). SPR data obtained for the 25 kDa CD23 was not of reliable quality but SPR for the 33kDa sCD23 showed a KD of 1.18 x 10-7M, close to that of Hibbert et al., (2005), J. Exp. Med, 202: 751-760. To test the therapeutic potential of the recombinant molecule, a B-lymphoblastoid cell line (Raji), a pre-monocytic cell line (U937), and PBMCs from normal and hyper-allergic individuals were used. All cells showed no change in production of cytokines. It is essential to investigate further cytokine functions and production implicated by recombinant forms of sCD23, as well as binding of sCD23 to CD21 and CD11b/c, and in vivo IgE regulation before a conclusion can be drawn as to whether recombinant sCD23 is a potential therapeutic target against allergic disease.
566

New platinum and palladium complexes: their anticancer application

Louw, Marissa January 2010 (has links)
Novel non-leaving groups were employed in this dissertation to synthesize platinum complexes which can assist in the understanding or improvement of anticancer action. Emphasis was placed on (NS)-chelate and (NN)-chelate platinum complexes. Bidentate (NS)-donor ligands were used as non-leaving ligands in the synthesis of platinum(II) complexes with iodo, chloro, bromo and oxalato groups as leaving groups. These complexes were synthesized and studied since many questions regarding the interaction of sulfur-donors and platinum still exist. These relate to thermodynamic and kinetic factors and their influence on anticancer action. In this dissertation the properties of novel platinum(II) complexes of a bidentate ligand having an aromatic nitrogen-donor atom in combination with a thioethereal sulfur atom capable of forming a five-membered ring with platinum(II) were studied. The general structure of the (NS)-ligands used was 2-((alkylthio)methyl)pyridine. Alkyl groups used were methyl, ethyl, propyl, benzyl and phenyl. Amine complexes of platinum have been studied extensively in the past. However, attention was given to novel aspects of substituted pyridine and imidazole ligands and their corresponding complexes. Amongst these are 2-(2-methylaminoethyl)pyridine, 1-methyl-2-methylaminoethylimidazole and 1-methyl-2-methylaminobenzylimidazole. The leaving groups included chloro, bromo and oxalato. Mononitroplatinum(IV) complexes were prepared using novel synthetic methods. Selected platinum(II) amine complexes were used as starting materials for this synthesis. Some of these compounds exhibit promising anticancer behaviour. (Trans-(R,R)-1,2-diaminocyclohexane)(oxalato)(mononitrochloro)platinum(IV) is a particularly good anticancer agent and has been patented internationally. All these complexes were characterized using mass spectrometry, chromatography, thermogravimetric analysis, kinetic aspects such as ligand exchange rates and finally their anticancer action against three different cancer cell lines was evaluated via cytotoxicity assays. Some of the compounds exhibited particularly good anticancer potential.
567

Ruthenium nitroimidazole complexes as radiosensitizers

Chan, Peter Ka-Lin January 1988 (has links)
Local control of tumours by radiotherapy may fail due to the presence of regions of hypoxic cells. Radiosensitizers, such as nitroimidazoles, enhance killing of the resistant cells by ionizing radiation. However, dose limiting side-effects have prevented the attainment of maximum sensitization. The successful chemotherapeutic drug, cis-diamminedichloroplatinum(II) (cis-DDP), and analogues show moderate radiosensitizing effects, possibly because of binding to DNA. A rationale is then to use the DNA binding property of a metal to carry a sensitizer to the target of radiation damage, DNA, thereby improving the radiosensitizing effect while reducing the toxic side-effects of nitroimidazoles. The complex cis-RuCI₂(dmso)₄ was used as a precursor for synthesis of Ru(II)-nitroimidazole complexes because of its anti-tumour and DNA binding activities. A series of Ru(II) complexes of formulation RuCI₂(dmso)₂Ln, where dmso is S-bonded dimethyl sulphoxide, L = a nitroimidazole, and n=1 or 2, has been synthesized and characterized, and their toxicities and radiosensitizing abilities examined in vitro. When L = 2-nitroimidazole or a substituted-2-nitroimidazole, n = 2, but the nitroimidazole ligands dissociate in aqueous medium. With L = the 5-nitroimidazole, metronidazole, n=2, the sensitizing ability of the six-coordinate cis complex was disappointing with sensitizer enhancement ratio (SER) of 1.2 in hypoxic Chinese hamster ovary (CHO) cells. A series of 4-nitroimidazoles ligands was then studied. With L = 4-nitroimidazole (4-NO₂-Im), 1-(1' -aziridinyl-2' -propanol)-2-methyl-4-nitroimidazole (RSU-1170), 2-(1,2-dimethyl-4-nitroimidazolyl)-2-aminoethanol (RSU-3083), and 1-methyl-4-nitro-5-phenoxyimidazole (RSU-3100), n=2 and the six coordinate complexes appear to be of all cis geometry. The NMe-4-NO₂-Im ligand (n=1) chelates through the imidazole-N and the oxygen of NO₂ group as evidenced from spectroscopic data. Coordination via the nitrito group is uncommon and other examples involving nitroimidazole ligands have not been reported. For the 1-methyl-5-(2'-thioimidazolyl)-4-nitroimidazole (RSU-3159) ligand (n=1), binding to Ru occurs through the thioether and chelation may occur through the imidazole-NCH₃. In this series of Ru(II)-4-nitroimidazole complexes studied, RuC1₂(dmso)₂-NO₂-Im)₂, 5, was the most effective radiosensitizer (SER = 1.6 at 200 ,μM) and is better than the clinically used misonidazole (SER = 1.3 at 200 μM). In addition, 5 did not sensitize oxic CHO cells. Other Ru-N-substituted-4-nitroimidazole complexes gave SER values of 1.1-1.4 at 100-200 μM. Complex 5 also produced a dose-dependent increase in genotoxic activity (as measured by the in vitro induction of chromosome aberrations in CHO cells), which is similar to that of misonidazole but much less than that of c/s-DDP. Two changes in ancillary ligands and geometry of complexes were also examined: replacement of (i) dmso by tmso (tetramethylene sulphoxide), (ii) C1⁻ by Br⁻. The Ru-nitroimidazole complexes were synthesized from the precursors RuCl₂(tmso)₄ and trans-RuBr₂(dmso)₄. In this series of complexes, only RuCl₂(tmso)₂(4-NO₂-Im)₂, 15, and RuCl₂(tmso)₂(SR-2508), 18, have significantly higher SER values (1.6 and 1.5, respectively) than their corresponding nitroimidazole ligands. The tmso complexes of 2-NO₂-Im derivatives were more stable than the dmso series in aqueous solution with respect to the dissociation of the nitroimidazole ligands, which might be due to the improved lipophilicity of tmso complexes. Complex 18. is suggested to be penta-coordinated from XPS and ir data. The RuBr₂(dmso)₂(4-NO₂-Im)₂ was a less effective sensitizer (SER = 1.3 at 200 μM) than the dichloro analogue which may result from different geometrical structures or different behaviour in aqueous solution chemistry. The enhanced radiosensitizing effect over the corresponding free nitroimidazole ligand observed for complexes 5, 15 and 18 may depend on: (a) the metal's ability to target the sensitizer to DNA; complex 5 does bind to DNA, dissociation of C1⁻ perhaps facilitating the reaction; (b) the increase in reduction potential or (c) an increase in lipophilicity of the nitroimidazole ligand on coordination. However, the enhanced radiosensitization does not result from depletion of non-protein thiols. In the present study, the Ru complexes are less toxic than their corresponding nitroimiazole ligands in vitro. The radiosensitization and toxicity of the complexes 5, 15 and 18 are better than those of the free nitroimidazole ligands and the clinically used radiosensitizer, misonidazole. The data encourage further investigations of the use of transition metal complexes as radiosensitizers to combat the hypoxic tumour cells. [Formula Omitted] / Science, Faculty of / Chemistry, Department of / Graduate
568

DoM chemistry and phosphines: synthesis and catalystic aspects

Mokhadinyana, Molise Stephen 11 June 2008 (has links)
The main objective of the research described in this dissertation was the preparation of a range of bulky and electron-rich phosphine ligands using the DoM methodology developed in our labs for this purpose. These ligands would be employed in the Suzuki cross-coupling reaction of deactivated aryl bromides and aryl chlorides. Initially, a range of phosphinic amides was synthesised and tested for DoM reactivity. TMSCl, MeI and O2 were successfully used as electrophiles, incorporating TMS, Me and OH groups in the ortho-position of these phosphinic amide systems. This development was encouraging and provided a route to incorporate a phosphine on the ortho-position of these phosphinic amide systems by using Ph2PCl and Cy2PCl as electrophiles to incorporate Ph2P and Cy2P, respectively. The route was versatile and a range of electrophiles was used to prepare phosphine ligands with varying electronic and steric properties. These electrophiles (of the R2PCl variety) were often specifically prepared from PCl3 and the corresponding Grignard reagent. Phosphine ligands synthesised in this research project using our DoM (directed ortho metallation) methodology were tested in Suzuki cross-coupling reactions of deactivated aryl bromides and some aryl chlorides and showed excellent reactivity, with the advantage that the ligands of this study are oxidatively and hydrolytically stable. Efforts were also made to modifying the phosphinic amide-functionalised phosphine ligands to generate their water-soluble derivatives. One way of achieving this was by the hydrolysis of the phosphinic amide moiety to the phosphinic acid analogue. Salts of these phosphinic acid derivatives have promising activities as water-soluble substrates. This route was successful only iii with less electron-rich systems providing an opening for more research in this regard. In an alternative synthetic route to polar water-soluble phosphines it was envisioned that phosphonate-derivatised phosphines would offer access to water-soluble phosphine ligands by using milder hydrolysis conditions. These phosphonate systems were also tested for DoM reactivity and showed promising reactivity. Phosphonates have not previously being employed as DoM groups, and this alone expands the application and potential scope of P-based DoM groups. / Prof. D.B.G. Williams
569

Cymene ruthenium N^N and N^N^N cationic species as potential anti-malaria and anti-cancer agents

Khumalo, Nozipho Magava 01 July 2014 (has links)
M.Sc. (Chemistry) / The main aim of this study was to use pyrazolyl-based bi-and tri-dentate ligands in the synthesis of several p-cymene-ruthenium complexes. These ruthenium complexes and their corresponding ligands were subsequently tested for their anticancer and antimalarial activities...
570

Structure-based inhibitor design and validation : application to Plasmodium falciparum glutathione S-transferase

Botha, Maria Magdalena 21 July 2008 (has links)
The primary aim of this study was to use a computational structure-based ligand design strategy in finding novel ligands that could act as inhibitors of PfGST as basis for future antimalarial drug development. Since there is only one PfGST isoenzyme present in the parasite and the architecture of the binding site differs significantly from its human counter part, PfGST is considered a highly attractive drug target. Inhibition of PfGST is expected to interfere at more than one metabolic site in synergy: it is likely to disrupt the glutathione-dependent detoxification process, which will lead to an increase in the cytotoxic peroxide concentration and most likely lead to an increase in the levels of ferriprotoporphyrin IX and hemin as well. S-hexyl glutathione was co-crystallized with PfGST (Harwaldt et al., 2004), consequently it was seen as one of the most important lead compounds in the development of PfGST inhibitors. The first step in the rational drug design strategy was to modify GTX, concentrating on its ability to bind competitively to the G site and the hydrocarbon chain protrudes into the H site as well. Considering the 3D structure of the enzyme, modifications to GTX were made by LUDI and NEWLEAD, resulting in a library of active site binding ligands ranked by AutoDock according to their ability to optimally bind to PfGST. Additionally, the ligands were ranked according to their affinity for binding to PfGST produced by AutoDock, LUDI and XScore. Once all the compounds were ranked by these in silico methods they were screened for acquisition or synthetic accessibility and those available were experimentally screened for activity against recombinantly expressed PfGST. Based on in silico predictions NDA was the best inhibitor followed by LAP and EDP. From the biological assay and Lineweaver-Burk analysis the order of inhibition was NDA as the best inhibitor tested, followed by LAP and EDP. EDP and LAP showed competitive inhibition but the inhibition constant values were signi_cantly lower than GTX. With respect to GSH and CDNB, NDA was found to be a non-competitive inhibitor. It was suggested therefore that NDA binds to a non-substrate Summary 93 binding site that may lead to conformational change of the enzyme and hence lead to a loss in enzyme activity. This data leads to the conclusion that the H site should be better exploited in order to find more potent inhibitors or non-substrate binding sites. It was concluded that the experimental results add confidence to the discriminative power of the structure-based ligand design strategy and that these inhibitors could form scaffolds for future antimalarial drug development. / Dissertation (MSc (Bioinformatics))--University of Pretoria, 2008. / Biochemistry / unrestricted

Page generated in 0.0489 seconds