• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The degradation of lignocellulosics under conditions applicable to wetlands in northern Greece

Petrou, M., Edwards, Howell G.M., Janaway, Robert C., Kavvouras, P., Thompson, Gill B., Wilson, Andrew S. January 2008 (has links)
No
2

Hydrolytic methods for the quantification of fructose-equivalents in herbaceous biomass

Nguyen, Stefanie K. 06 June 2008 (has links)
A low, but significant, fraction of the carbohydrate portion of herbaceous biomass may be composed of fructose/fructosyl-containing components (“fructose equivalents”); such carbohydrates include sucrose, fructo-oligosaccharides, and fructans. Standard methods used for the quantification of structural-carbohydrate-derived neutral monosaccharide-equivalents in biomass are not particularly well suited for the quantification of fructose equivalents due to the inherent instability of fructose in conditions commonly used for hemicellulose/cellulose hydrolysis (> 80% degradation of fructose standards treated at 4% sulfuric acid, 121oC, 1 hr). Alternative time, temperature and acid concentration combinations for fructan hydrolysis were considered using model fructans (inulin, β-2,1 and levan, β-2,6) and a grass seed straw (Tall Fescue, Festuca arundinacea) as representative feedstocks. The instability of fructose, relative to glucose and xylose, at higher acid/temperature combinations is demonstrated, all rates of fructose degradation being acid and temperature dependent. Fructans are shown to be completely hydrolyzed at acid concentrations well below that used for the structural carbohydrates, as low as 0.2%, at 121oC for 1 hr. Lower temperatures are also shown to be effective, with corresponding adjustments in acid concentration and time. Thus, fructans can be effectively hydrolyzed under conditions where fructose degradation is maintained below 10%. Hydrolysis of the β-2,1 fructans at temperatures ≥ 50oC, at all conditions consistent with complete hydrolysis, appear to generate difructose dianhydrides. These same compounds were not detected upon hydrolysis of levan, sucrose, or straw components. It is suggested that fructan hydrolysis conditions be chosen such that hydrolysis goes to completion, fructose degradation is minimized, and difructose dianhydride production is accounted for. / Graduation date: 2009
3

DECOMPOSITION BEHAVIORS OF LIGNIN IN HYDROTHERMAL TREATMENT OF LIGNOCELLULOSICS / 水熱処理によるリグノセルロースでのリグニンの分解挙動

Takada, Masatsugu 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第20477号 / エネ博第346号 / 新制||エネ||69(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 坂 志朗, 教授 髙部 圭司, 准教授 河本 晴雄 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
4

Celulose e lignocelulósicos como suportes na remoção de contaminantes em líquidos / Cellulose and lignocellulosics as supports toward contaminants removal from liquids

Melo, Julio Cesar Perin de, 1982- 12 November 2012 (has links)
Orientador: Claudio Airoldi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-22T05:25:35Z (GMT). No. of bitstreams: 1 Melo_JulioCesarPerinde_D.pdf: 28431838 bytes, checksum: 0460daaa92bb9d6b56903affddf613c8 (MD5) Previous issue date: 2012 / Resumo: O trabalho foi realizado com biopolímeros orgânicos naturais: celulose e lignocelulósicos, modificados quimicamente aumentando a capacidade de sorção de contaminantes em líquidos. Foram caracterizados por IV, RMN de C, DRX, MEV and TG. Assim, as inércias química e física foram superadas através dos seguintes procedimentos sintéticos: esterificação com anidridos de celulose (maleato: 2,82, succinato: 3,07, ftalato: 2,99 mmol g) e de mesocarpo de babaçu (maleato: 141,79, succinato:176,99, ftalato:149,27 mg g); cloração da celulose com cloreto de tionila (4,95 mmol g); aminação de celulose com etileno-1,2-diamina (3,03 mmol g); reação de etilenossulfeto com mesocarpo (86,7 mg g) e epicarpo de babaçu (20,2 mg g). Com as modificações químicas dos biopolímeros as propriedades de sorção se tornaram superiores as dos biopolímeros de partida e as novas capacidades máximas de remoção de contaminantes foram: anidridos de celulose [maleato (Ni = 1,75 e Co = 2,40 mmol g), succinato: (Ni = 2,46 e Co = 2,46 mmol g) e ftalato: (Ni = 2,26 e Co = 2,43 mmol g)]; anidridos com mesocarpo de babaçu (maleato: (Cu = 19,88 mg g), succinato: (Cu = 38,58 mg g) e ftalato: (Cu = 30,63 mg g) soluções hidroalcoólicas); aminação de celulose com etileno-1,2-diamina (Cu = 2,32, Co = 1,35, Ni= 1,70 e Zn = 1,65 mmol g); reação de etilenossulfeto com mesocarpo (Cu = 39,6 mg g) e epicarpo (Cu = 39,2 mg g) de babaçu. A celulose também foi oxidada com metaperiodato aquoso para dar origem à celulose em sua forma oxidada, o 2,3-dialdeídocelulose, material de partida para outras reações, as quais foram: redução dos grupos aldeído do 2,3-dialdeídocelulose, seguido da reação deste material com os anidridos malêico, succínico e ftálico; em seguida cada um dos materiais na forma ácida foi reagido separadamente com etileno-1,2-diamina, dietil-1,2,4-triamina, trietil-1,2,4,6-tetramina. A outra rota foi a reação do 2,3-dialdeído-celulose com as poliaminas etileno-1,2-diamina, dietil-1,2,4-triamina, trietil-1,2,4,6-tetramina e em seguida, com cada um dos materiais aminados obtidos, reagí-los separadamente com os anidridos malêico, succínico e ftálico. / Abstract: The natural organic biopolymers, cellulose and lignocellulosics, were chemically modified in order to increase their sorption capacities for contaminants from liquids. The technics employed for characterization were IR, C NMR, XDR, SEM and TGA. Chemical modification and the degree of substitution were: esterification of cellulose with anhydrides [maleate: 2,82 mmol g, succinate: 3,07 mmol g, phthalate: 2,99 mmol g) and esterification of babassu mesocarp coconut with anhydrides (maleate: 141,79 mg g, succinate: 176,99 mg g, phthalato: 149,27 mg g); chlorination of cellulose with thionyl chloride (4,95 mmol g); amination of cellulose with ethylene-1,2-diamine (3,03 mmol g); reaction of ethylenesulfide with babaçu coconut mesocarp (86,7 mg g) and epicarp (20,2 mg g) The sorption capacities of these chemically modified biopolymers were outlighted as confirmed by the maxima sorption results and were: cellulose with anhydrides (maleate: (Ni = 1,75 e Co = 2,40 mmol g), succinate: (Ni = 2,46 e Co= 2,46 mmol g) e ftalate: (Ni = 2,26 e Co = 2,43 mmol g)); babassu mesocarp coconut with anhydrides [maleate: (Cu = 19,88 mg g), succinate: (Cu = 38,58 mg g) e ftalate: (Cu = 30,63 mg g) hydroalcoholic solution]; aminated cellulose (Cu = 2,32, Co = 1,35, Ni = 1,70 e Zn = 1,65 mmol g); babaçu coconut thyol-mesocarp (Cu = 39,6 mg g) e epicarp (Cu = 39,2 mg g). Cellulose was also oxidized with aqueous methaperiodate to produce cellulose-2,3-dialdehyde, which was used in other reactions: reduction of aldehyde groups, followed by reacting it with maleic, succinic and phthalic anhydrides; each of these materials in their acid form was reacted with ethylene-1,2-diamine, diethyl-1,2,4-triamine, triethyl-1,2,4,6-tetramine. The 2,3-dialdehyde-cellulose was also reacted with ethylene-1,2-diamine, diethyl-1,2,4-triamine, triethyl-1,2,4,6-tetramine and the aminated cellulose was separately reacted with maleic, succinic and phthalic anhydrides. / Doutorado / Quimica Inorganica / Doutor em Ciências

Page generated in 0.0504 seconds