• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 71
  • 42
  • 40
  • 14
  • 14
  • 14
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 556
  • 163
  • 126
  • 61
  • 59
  • 44
  • 43
  • 43
  • 42
  • 37
  • 37
  • 36
  • 36
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Effects of Work Sharing of Shoulder and Ankle Movements During Walking

Paffrath, Lauren G 01 January 2023 (has links) (PDF)
People experiencing mobility deficiencies in their lower limbs caused by genetics, injuries, diseases, etc. struggle with their physical and mental health. The goal of this research is to design an exoskeleton that will connect the upper limb (e.g., arm extension) to the ankle joint during walking movements. We advanced the first prototype of the Workshare Upper Lower Limb (WULL) by only targeting the ankle joint as the lower limb component. We found that this change would have the biggest impact on an individual's walking movements. The benefit of this research will be found in answering the question: will harnessing the kinetic energy from a person's upper limb (e.g., arm extension or arm flexion) to transfer into the ankle joint for gait assistance reduce the lower limb muscle activation during walking movements? A series of experiments were run to test the efficacy of the wearable device. Six participants were fitted to the device and six electromyography (EMG) sensors to track the muscle activation during a comfortable walking pace. This gait analysis study used pressure insoles to calculate ground reaction forces and multiple IMUs to track the individuals' limbs and joints kinetic motion. The overall effectiveness of the device was explored based on the data collected in this study. This device decreased muscle activation of the gastrocnemii medialis and increased the anterior deltoid activation. These results support the goal of the experiment to utilize the upper limbs (anterior deltoid) to assist the lower limbs (ankle joint) during walking.
82

A Wireless Telemetry System to Monitor Gait in Patients with Lower-Limb Amputation

Fan, Richard E., Wottawa, Christopher R., Wyatt, Marilynn P., Sander, Todd C., Culjat, Martin O., Culjat, Martin O. 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Even after rehabilitation, patients with lower-limb amputation may continue to exhibit suboptimal gait. A wireless telemetry system, featuring force sensors, accelerometers, control electronics and a Bluetooth transmission module was developed to measure plantar pressure information and remotely monitor patient mobility. Plantar pressure characterization studies were performed to determine the optimal sensor placement. Finally, the wireless telemetry system was integrated with a previously developed haptic feedback system in order to allow remote monitoring of patient mobility during haptic system validation trials.
83

The role of ipsilesional forelimb experience on functional recovery after unilateral sensorimotor cortex damage in rats

Allred, Rachel Patrice 16 October 2009 (has links)
Following unilateral stroke there is significant loss of function in the body side contralateral to the damage and a robust degenerative-regenerative cascade of events in both hemispheres. It is natural to compensate for loss of function by relying more on the less-affected body side to accomplish everyday living tasks (e.g. brushing teeth, drinking coffee). This is accompanied by a “learned disuse” of the impaired side thought to occur due to repeated experience with its ineptness. However, as investigated in these studies, it may also be due to brain changes instigated by experience with the intact body side. The central hypothesis of these dissertation studies is that experience with the intact forelimb, after unilateral sensorimotor cortex (SMC) damage, disrupts functional recovery with the impaired forelimb and interferes with peri-lesion neural plasticity. Following unilateral ischemic lesions, rats were trained on a skilled reaching task with their intact (less-affected) forelimb or received control procedures. The impaired forelimb was then trained and tested on the same skilled reaching task. Intact forelimb experience worsened performance with the impaired forelimb even when initiated at a more delayed time point following lesions. Intact forelimb training also reduced peri-lesion expression of FosB/ΔFosB, a marker of neuronal activation, and caudal forelimb motor map areas compared to animals without intact forelimb training. It was further established that it is focused training of the intact forelimb and not experience with this limb per se, as animals trained with both forelimbs in an alternating fashion did not exhibit this effect. Transections of the corpus callosum blocked the maladaptive effect of intact forelimb experience on impaired forelimb recovery, suggesting a disruptive influence of the intact hemisphere onto the lesion hemisphere that is mediated by experience. Together these dissertation studies provide insight into how experience with the less-affected, intact body side, can influence peri-lesion neural plasticity and recovery of function with the impaired forelimb. The findings from these studies suggest that compensatory use of the less-affected (intact) body side following unilateral brain damage is not advantageous if the ultimate goal is to improve function in the impaired body side. / text
84

How do healthy individuals adapt to reversed vision generated when using mirror specs? : an investigation into mirror devices, adaptation to body schema and imagery ability in healthy participants

Walker, Joanna Louise January 2010 (has links)
Introduction: This study investigates a new form of Mirror Therapy (MT), the Mirror Specs. Evidence suggests that MT is a non-invasive, cost effective method of reducing pain and increasing functioning in some chronic pain conditions. There is no clear explanation for the underlying mechanisms of MT, however, a plausible hypothesis suggests that adaptation to the Body Schema is an integral component. Aims and Hypotheses: The current study examined Body Schema adaptation in healthy participants when performing a Finger Tapping Task with both Mirror Specs and a Mirror Box. It was hypothesised that adaptation would be indicated by increases in Reaction Times (RTs) and Error Rates when comparing unimanual phases of a Finger Tapping Task, following a bimanual „adaptation‟ phase. It was hypothesised that there would be no difference between participants‟ ability to adapt to each device. Finally, the study proposed that there would be a relationship between the adaptation observed on the Finger Tapping Task and participants individual imagery abilities. Method: Participants performed 4 phases of a Finger Tapping Task with alternate bimanual and unimanual phases when using both the Mirror Specs and Mirror Box. Imagery abilities were measured using self-report questionnaires and a Motor Imagery computer task. Results and Discussion: Repeated Measures ANOVAs revealed reductions in RTs and Error Rates in Phase 3 compared to Phase 1 on the Finger Tapping Task. There were no differences between RTs and Error Rates when using the Mirror Specs and Mirror Box. These findings suggest that healthy participants were able to use each Mirror Device effectively and this provide impetus for the proposal that Mirror Specs could provide a practical, cost effective addition to rehabilitation services. Finally, there were no clinically significant relationships between use of the Mirror Devices and imagery abilities, thereby indicating imagery abilities did not influence how participants adapted to using the Mirror Devices.
85

The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot

Webber, James T., Raichlen, David A. 30 November 2016 (has links)
Human bipedal locomotion is characterized by a habitual heel-strike (HS) plantigrade gait, yet the significance of walking foot-posture is not well understood. To date, researchers have not fully investigated the costs of non-heel-strike (NHS) walking. Therefore, we examined walking speed, walk-to-run transition speed, estimated locomotor costs (lower limb muscle volume activated during walking), impact transient (rapid increase in ground force at touchdown) and effective limb length (ELL) in subjects (n=14) who walked at self-selected speeds using HS and NHS gaits. HS walking increases ELL compared with NHS walking since the center of pressure translates anteriorly from heel touchdown to toe-off. NHS gaits led to decreased absolutewalking speeds (P=0.012) and walk-to-run transition speeds (P=0.0025), and increased estimated locomotor energy costs (P<0.0001) compared with HS gaits. These differences lost significance after using the dynamic similarity hypothesis to account for the effects of foot landing posture on ELL. Thus, reduced locomotor costs and increased maximum walking speeds in HS gaits are linked to the increased ELL compared with NHS gaits. However, HS walking significantly increases impact transient values at all speeds (P<0.0001). These trade-offs may be key to understanding the functional benefits of HS walking. Given the current debate over the locomotor mechanics of early hominins and the range of foot landing postures used by nonhuman apes, we suggest the consistent use of HS gaits provides key locomotor advantages to striding bipeds and may have appeared early in hominin evolution.
86

Out of sight : using animation to document perceptual brain states

Moore, Samantha January 2015 (has links)
It is acknowledged that the genre of animated documentary is particularly suited to depicting the subjective point of view (Wells, 1997, Honess Roe, 2013). It has also been suggested that animated documentary may have a tendency toward collaborative working methods (Ward, 2005: 94). This PhD work explores and expands these suggestions and presents the development of a methodology adapted from what has been termed collaborative ethnography (Lassiter, 2005) when using animation to document perceptual brain states. The claim to originality in this thesis lies in the methodological approach taken through the documenting of idiopathic perceptual brain states, previously unrepresented in animation. It involves a shifting of the roles of subject and director to collaborative consultant and facilitator respectively, and differentiates between the recording of an animated document and the creation of an animated documentary . It rejects the sound reliant template of the 'animated interview' (Strøm, 2005: 15) as the dominant model of creating animated documents, which assumes both that the indexical is crucial to documenting, and that this can only be achieved in animation through the use of indexical sound. It agrees with Tom Gunning s argument that Charles Sanders Pierce's original idea of the index as part of an interconnected triad of signs (index, symbol and icon) has been abstracted from its richer signifying context and extracted a simplified version of what Pierce intended it to mean (a trace or impression left by an object) to become a 'diminished concept' (2007:30-1), essentially a short hand coda in this instance for document . The practice in this work challenges this by presenting an alternative; using a collaborative cycle methodology.
87

Smart dampers applied to upper-limb rehabilitation training systems

Balkhoyor, Loaie B. January 2017 (has links)
There are several ways in which a disability can occur. Strokes are a leading cause, affecting older people in particular, with an estimated annual incidence rate of 180, 125, 200, and 280 per 100,000 citizens in the USA, Europe, England, and Scotland, respectively. Muscle strengthening through resistance training has been reported to have a positive effect on the recovery of normal physiological functions after the occurrence of a neurological or traumatic injury. A number of studies have shown that resistance training results in improved mobility, a reduction in pain, and improved stability. Several rehabilitation devices have been developed and introduced for use in the healthcare sector, but a new generation of intelligent therapy-assisted machines is needed if there is to be a significant impact on the numbers of patients that can be treated under current staffing level. In this project, the design and performance of multi-degree-of-freedom smart balland-socket dampers and their application to fully-controllable rehabilitation training systems were investigated. A key feature of these dampers is the use of magnetorheological (MR) fluids which can exhibit dramatic changes in their rheological properties, such as yield stress, when subjected to external magnetic fields. These fast and reversible fluid rheological changes would permit the smart damper to provide the required impedance at orthotic arm joints, which are aimed for upper-limb rehabilitations and in accord with the exercise specifications prescribed by the physiotherapist. An exemplar upper-limb orthotic arm incorporating smart ball-and-socket dampers at its joints was assessed using SolidWorks software and the results confirmed the response of the dampers to variable excitation inputs under an input simulating a wheelchair driving motion. This study also enabled the estimation of the orthotic arm reach envelope, task performance and limitations in which important device design factors such as the angle of rotation of the smart dampers were taken into account. Although, three smart dampers with variable torque resistance capability are required at the shoulder, elbow and wrist joints of upper-limb rehabilitation orthoses, this project was focused on the development of a smart ball-and-socket damper aimed for the shoulder joint only. The target was to produce a compact smart electromagnetic damper that is capable to deliver the required torque resistance with the least power consumption. The efficient excitation of MR fluids requires a magnetic circuit, which consists of a source of magnetic flux and a path to deliver it to the fluid. Electromagnetic finite element analysis using Ansys software were carried out to achieve the optimum design of the damper’s electromagnetic circuit. The effects of the relative permeability of the damper’s materials on the generation of the magnetic field and its delivery to the MR fluid were examined. Other factors such as the coil shape, size, orientation and location in addition to the utilisation of non-magnetic materials in the electromagnetic circuit design were also investigated with the aim to optimise the performance of the smart damper. Furthermore, 3-D electromagnetic analyses were conducted, which confirmed the validity of the 2-D magnetic trials. Accordingly, the size of the MR fluid ball-and-socket damper was estimated with a ball diameter of 100 mm, which was found to produce a braking torque of about 50 N.m when the MR fluid is energised by about 1 Tesla. The performance of the ball-and-socket damper was estimated using theoretical, and numerical approaches. The theoretical model combines the viscous-friction and the controllable field-dependent characteristics of the MR fluid in which a Bingham plastic model was used to simulate the shear stress of the fluid under various input conditions. The numerical approach involved a special procedure to simulate the device performance using computational fluid dynamics techniques, which were performed using Ansys CFX code. Three commercial MR fluids were assessed and it was found that the simulated device torque compared well with the theoretical values. The mechanical design of the optimised ball-and-socket damper was accomplished using SolidWorks software when several important design and manufacturing factors were taken into account. These factors included the assembly of the ball and socket parts, the sealing of the MR fluid inside its designated gap, winding of the coil inside the socket part, maintaining a uniform MR fluid gap, and insertion of the nonmagnetic rings at their predesigned locations. Finally, a dedicated experimental rig was constructed which facilitated the assessment of the smart damper under both static and dynamic testing conditions. It was found that agreement between model predictions and experimental observations was excellent. Furthermore, this device performance was found to meet torque requirements expected in most upper-limb rehabilitation regimes.
88

Sensitivity of the Opal Instrument for Gravity Wave Detection

Zia, Kenneth I. 01 December 2018 (has links)
Knowing what goes on in the upper atmosphere (∼80-140 km) is very important to the space science community. There are several competing forces that influence the temperature and densities of neutral molecules in that region. OPAL (Optical Profiling of the Atmospheric Limb) is funded by the National Science Foundation (NSF) to measure the temperature there using light from oxygen molecules (∼760 nm). To accomplish this,OPAL is built into a CubeSat (a satellite the size of a loaf of bread) to be launched from the International Space Station (ISS) at an altitude of about 400 km. This vantage point is needed to see the light that is absorbed before it makes it to the ground, so a satellite is the optimal choice. Similar to looking at a tennis ball in your hand and trying to see the details of the yellow fuzz fibers on the outer edges of the ball, OPAL is trying to see the light emitted from oxygen at the outer edge of the atmosphere (also called the limb). In order to see how well OPAL can detect space weather signatures affecting the oxygen emissions a suite of models are made to simulate its output. This suite is made of: simulating the flight path of CubeSat, modeling where the OPAL instrument is looking, and how the oxygen light changes with where the instrument is looking. Because we are currently in a solar minimum, the occurrence of solar storms and geomagnetic storms are considered rare events. This allows for the concentrating on detecting gravity waves in this region and the minimum values of detecting them with this developed model.
89

Community experiences of persons with lower limb amputations in Malawi

Mpezeni, Stella January 2018 (has links)
>Magister Scientiae - MSc / Persons with lower limb amputations (LLA) experience different challenges in the community. These challenges include the physical, psychological and social function of an individual. Little is known in Malawi on what persons with lower limb amputations go through in the communities where they live. Therefore, the study aimed at exploring and determining community experiences of persons with LLA in Malawi. The study sought to address the following objectives: 1) To determine the functional and psychological status of persons with LLA in the community; 2) To explore and describe experiences on social participation of persons with LLA in the community; 3). To explore experiences on community re-integration following LLA. A mixed method approach was applied where quantitative and qualitative data were collected simultaneously to provide a more holistic overview of the experiences of persons with LLA at one point in time. The study setting was Queen Elizabeth Central Hospital (QECH) and Kamuzu Central Hospitals (KCH) (500 miles), located in Malawi. A sample of 180 participants was recruited to participate in the study. Three self-administered questionnaires (socio-demographic questionnaire, OPUS module of lower extremity functional status, and a Beck’s depression inventory scale) and a semi-structured interview guide were used for data collection. Thematic data analysis was used to analyze qualitative data, while quantitative data was analyzed using descriptive and inferential statistics. Ethical clearance was obtained from the University of the Western Cape Biomedical Research Ethics Committee (BMREC) and College of Medicine Research Ethics Committee (COMREC). Permission to conduct the study was obtained from KCH (500 miles) and QECH. Privacy andconfidentiality was strictly observed such that data obtained was anonymous. It was kept in a secure place, and electronic data was secured using a password.
90

Kinematic analysis of the upper limb during anatomical and functional movements in healthy children

Dwan, Leanne Nicole, Safety Science, Faculty of Science, UNSW January 2009 (has links)
Impairments of upper limb function can negatively impact an individual???s ability to carry out everyday tasks. Children with cerebral palsy can have limitations of upper limb movement due to physiological and structural changes in their body. Current treatment regimes for children with upper limb involvement of cerebral palsy are assessed using a variety of qualitative assessment tools. These measures rely on subjective input from the assessor, and can be insensitive to significant functional improvements. Research methods in upper limb motion analysis are developing towards use as clinical tools. To date, there is a paucity of knowledge on the quantitative measures of range of motion (ROM) and function of upper limbs in healthy children. There is also lack of agreement on repeatable functional tasks of the upper limb for 3D measurement. The identification of a repeatable task in healthy children would facilitate the use of upper limb 3D motion analysis to guide clinical practice and improve patient outcomes. This thesis aims to describe upper limb joint range of movement in each degree of freedom and present normative three dimensional kinematic data of upper limb movement in healthy children during a repeatable upper limb functional task. This will provide a basis for comparison to children with movement disorders for future research and clinical practice. The UNSW kinematic upper limb model was found to successfully measure three dimensional upper limb anatomical and functional movements in healthy children. Normative kinematic data are reported for anatomical movements and two functional tasks. The results of the studies undertaken showed that differences in dominant and non-dominant limbs were present during anatomical and functional movements. Joint angles measured were found to be repeatable in healthy children. The results suggest that methods used were reliable for investigating upper limb kinematics. Functional movement time-series data were found to be repeatable for the group with the exception of wrist flexion/extension during the hand to mouth movement for both the dominant and non-dominant limbs. These findings improve current knowledge on upper limb kinematics in healthy children. This knowledge can assist the investigation of movement disorders in children to facilitate clinical decision making.

Page generated in 0.1143 seconds