Spelling suggestions: "subject:"limiteurs"" "subject:"imitateurs""
1 |
Construction de méthodes de volumes finis tridimensionnelles sans solveur de Riemann pour les systèmes hyperboliques non-linéairesSt-Cyr, Amik January 2002 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
2 |
Construction de méthodes de volumes finis tridimensionnelles sans solveur de Riemann pour les systèmes hyperboliques non-linéairesSt-Cyr, Amik January 2002 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur. / Dans cette thèse nous abordons la conception de nouveaux schémas de type volumes finis pour la résolution de systèmes hyperboliques non-linéaires pour la prédiction des écoulements compressibles instationnaires. Les nouveaux schémas présentés s'appuient tous sur les schémas proposés par Arminjon-Viallon et Arminjon-Stanescu-Viallon en 2 dimensions spatiales qui, eux, furent dérivés du schéma de Nessyahu-Tadmor en une dimension d'espace construit à partir du schéma décalé bien connu de Lax-Friedrichs. Ces schémas peuvent être considérés comme étant tous du type de Godunov et ont pour caractéristique principale d'éviter la résolution des problèmes de Riemann aux interfaces en utilisant 2 maillages différents pour, respectivement, les pas de temps pairs et impairs. Pour éviter la trop grande diffusion amenée par le schéma de Lax-Friedrichs, on a eu recours à l'utilisation d'une technique nommée MUSCL, originalement proposée par van Leer, consistant à reconstruire la solution constante par cellule en une solution linéaire par cellule tout en limitant les oscillations grâce à l'utilisation de fonctions non-linéaires. On obtient tout d'abord une extension en 3 dimensions spatiales sur des maillages cartésiens structurés. Ensuite, nous abordons le cas de maillages non-structurés composés de tétraèdres, et la formulation mathématique du schéma associé à ces cellules. Pour réduire les temps de calcul, un nouveau, schéma de type centré fondé sur celui de Nessyahu-Tadmor mais évitant l'utilisation d'un pas intermédiaire, et composé d'un nouveau flux est proposé en une et 2 dimensions spatiales pour des maillages structurés, puis en 3 dimensions sur des maillages non structurés composés de tétraèdres. Les résultats obtenus démontrent que les nouvelles méthodes sont moins sensibles aux maillages déformés et qu'elles sont plus simples à mettre en œuvre du fait que le problème de Riemann est évité et qu'aucune information sur la décomposition de la discontinuité en les différents champs caractéristiques du système n'est nécessaire.
|
3 |
Développement d’un schéma aux volumes finis centré lagrangien pour la résolution 3D des équations de l’hydrodynamique et de l’hyperélasticité / Development of a 3D cell-centered Lagrangian scheme for the numerical modeling of the gas dynamics and hyperelasticity systemsGeorges, Gabriel 19 September 2016 (has links)
La Physique des Hautes Densités d’Énergies (HEDP) est caractérisée par desécoulements multi-matériaux fortement compressibles. Le domaine contenant l’écoulementsubit de grandes variations de taille et est le siège d’ondes de chocs et dedétente intenses. La représentation Lagrangienne est bien adaptée à la descriptionde ce type d’écoulements. Elle permet en effet une très bonne description deschocs ainsi qu’un suivit naturel des interfaces multi-matériaux et des surfaces libres.En particulier, les schémas Volumes Finis centrés Lagrangiens GLACE (GodunovtypeLAgrangian scheme Conservative for total Energy) et EUCCLHYD (ExplicitUnstructured Cell-Centered Lagrangian HYDrodynamics) ont prouvé leur efficacitépour la modélisation des équations de la dynamique des gaz ainsi que de l’élastoplasticité.Le travail de cette thèse s’inscrit dans la continuité des travaux de Maireet Nkonga [JCP, 2009] pour la modélisation de l’hydrodynamique et des travauxde Kluth et Després [JCP, 2010] pour l’hyperelasticité. Plus précisément, cettethèse propose le développement de méthodes robustes et précises pour l’extension3D du schéma EUCCLHYD avec une extension d’ordre deux basée sur les méthodesMUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) et GRP(Generalized Riemann Problem). Une attention particulière est portée sur la préservationdes symétries et la monotonie des solutions. La robustesse et la précision duschéma seront validées sur de nombreux cas tests Lagrangiens dont l’extension 3Dest particulièrement difficile. / High Energy Density Physics (HEDP) flows are multi-material flows characterizedby strong shock waves and large changes in the domain shape due to rarefactionwaves. Numerical schemes based on the Lagrangian formalism are good candidatesto model this kind of flows since the computational grid follows the fluid motion.This provides accurate results around the shocks as well as a natural tracking ofmulti-material interfaces and free-surfaces. In particular, cell-centered Finite VolumeLagrangian schemes such as GLACE (Godunov-type LAgrangian scheme Conservativefor total Energy) and EUCCLHYD (Explicit Unstructured Cell-CenteredLagrangian HYDrodynamics) provide good results on both the modeling of gas dynamicsand elastic-plastic equations. The work produced during this PhD thesisis in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrodynamicpart and the work of Kluth and Després [JCP, 2010] for the hyperelasticitypart. More precisely, the aim of this thesis is to develop robust and accurate methodsfor the 3D extension of the EUCCLHYD scheme with a second-order extensionbased on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws)and GRP (Generalized Riemann Problem) procedures. A particular care is taken onthe preservation of symmetries and the monotonicity of the solutions. The schemerobustness and accuracy are assessed on numerous Lagrangian test cases for whichthe 3D extensions are very challenging.
|
Page generated in 0.0411 seconds