Spelling suggestions: "subject:"limiting nutrient"" "subject:"iimiting nutrient""
1 |
Predator Mediated Competition: Predator Feeding on Two Different Trophic LevelsDaoussis, Spiro Paul 01 1900 (has links)
<p> We consider a model of the chemostat in which three competitor populations compete
for a single, essential, growth-limiting nutrient. As well, the least efficient competitor population also acts as a predator on the most efficient competitor population. Bifurcation
methods are used to obtain information about the qualitative behaviour of the model. A complete description of the global stability is given for the case when Lotka-Volterra response functions describe both competitor-nutrient and predator-prey interactions. For certain parameter values, the model predicts coexistence of the three species. The model also shows that the elimination of the predator population or the elimination of a competitor population can cause the system to collapse from three species to one.</p> / Thesis / Master of Science (MSc)
|
2 |
The Mathematical Modelling for Simulating the Shift of Limiting Nutrient in the EstuaryLui, Hon-kit 05 August 2009 (has links)
The linear relationship between a conservative element and salinity during mixing of water masses is widely used to study biogeochemistry in estuaries and the oceans. Even though nutrient ratios are widely used to determine the limiting nutrient in aquatic environments, the rules of nutrient ratios change through the mixing of freshwater and seawater are still unstudied.
This study provides general rules for nutrient ratios change via mixing. A simple mixing model is developed with the aims to illustrate that nutrient ratio is a nonlinear function of salinity, thus, shift in limiting nutrient over the salinity gradient can be simply a result of river water and seawater mixing, albeit complicated by biological consumption or remineralization. This model explains a natural phenomenon that rivers contain relatively high dissolved inorganic nitrogen (DIN) to soluble reactive phosphorus (SRP) ratios start to decrease the ratios as salinity increases when seawater contains higher SRP:DIN ratios. Although additional sources of P have been implicated as the cause for such change, this change can be a result of riverine water and seawater mixing. Four mixing rules are presented here to explain the factors governing the change in nutrient ratios vs. salinity; thus, answering why in some cases variations in nutrient loading and in other cases mixing triggers changes to seasonal limitation status in some estuaries.
Shift in nutrient ratios can be explained by the change in nutrient inventories via mixing. After the P-limited riverine water shifts in N limitation by mixing with N-limited seawater, new production of the estuary in general becomes limited by the amount of N inputs from the riverine water and the seawater. The result may help to explain a current consensus that N and not P riverine loadings lead to eutrophication in estuaries which are influenced by P-limited riverine waters. Further, new production which is generated by N-limited riverine input and N-limited seawater input mainly depends on the amount of N inputs from the riverine water and the seawater.
|
3 |
Caracterização da qualidade da água na Barragem do Perímetro Irrigado de Jacarecica I, Itabaiana, Sergipe. / Characterization of the reservoir water quality of Jacarecica I Irrigation District in Sergipe, Brazil.Silva, Marinoé Gonzaga da 13 March 2006 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Water resources preservation is a worldwide issue, mainly regarding to the availability to several human uses, including irrigated agriculture. The increasing concern about water quality and quantity is stimulating studies on dynamics of reservoirs and other water bodies. The acquired knowledge is of crucial importance for better management of a watershed and its components, especially when irrigated agroecosystems are present. The objective of this study was to characterize the quality of the water used in the Jacarecica I Irrigation District, situated in the Jacarecica River watershed, Sergipe,
Brazil. The water quality was characterized using physicochemical and biological parameters obtained from water samples collected in January, March, May, July, and
October of 2005. The field and laboratory measurements were pH, transparency, temperature, electrical conductivity, ammonia, nitrite, nitrate, total nitrogen, total phosphorus, dissolved oxygen, chlorophyll a, turbidity, sodium, potassium, calcium, magnesium, boron, chloride, bicarbonate, sulfate, fecal and total coliform. It was confirmed the utility of these parameters as water quality indicators for environmental monitoring purposes and for verification of the reservoir water adaptability to human and irrigation uses. The reservoir water ranged from eutrophic to oligotrophic depending on the season of the year and the sampling location, occurring reduction of the trophic state from the river to the dam. The limiting nutrient in the reservoir was the nitrogen during the dry season and the phosphorus during the rainy season. The
reservoir water hydrochemistry was homogeneous with predominance of chloride sodic water. According to USDA classification, the reservoir water is C2-S1, in both dry and
rainy seasons. Considering FAO’s guidelines, there were restrictions to water use due to sodium in the dry season and bicarbonate in both dry and the rainy seasons. / A preocupação crescente com a disponibilidade hídrica no que se refere a sua qualidade e quantidade vem estimulando o conhecimento da dinâmica dos reservatórios.Esse conhecimento é de fundamental importância para gerenciamento e manejo sustentável de uma bacia hidrográfica e da qualidade da água, principalmente quando se trata de agroecossistemas irrigados. Há uma tendência mundial na preservação dos recursos hídricos, visando garantir sua disponibilidade para usos como doméstico, agrícola, piscicultura, navegação, industrial, lazer, etc. Este trabalho tem por objetivo caracterizar através de parâmetros físico-químicos e biológicos a qualidade da água utilizada no
Perímetro Irrigado Jacarecica I, bacia hidrográfica do Rio Jacarecica, município de Itabaiana, SE. Os parâmetros da água medidos foram: pH, temperatura, transparência,
turbidez, sólidos suspensos, sólidos totais dissolvidos, oxigênio dissolvido, condutividade elétrica, sódio, potássio, cálcio, magnésio, boro, cloreto, bicarbonato, sulfato, amônia, nitrito, nitrato, nitrogênio total, fósforo total, coliforme fecal, em cinco campanhas de amostragem: janeiro, março, maio, julho e outubro de 2005. Estes parâmetros servem como indicadores ambientais da água da barragem, visando tanto o
monitoramento ambiental como a sua adaptabilidade à prática da agricultura irrigada. Com base no Índice de Estado Trófico o reservatório apresenta características de sistemas oligotróficos a eutróficos, dependendo do período e da localização das estações amostradas. Observou-se ainda que ocorre redução do estado de trofia no sentido do rio para a barragem. O nutriente limitante do reservatório no período de estiagem é o nitrogênio e, durante o período chuvoso, a limitação passa a ser do fósforo. Constatouse um comportamento hidroquímico homogêneo, com predominância do tipo de água cloretada sódica. De acordo com o sistema de classificação do USDA a água pode ser classificada como C2-S1, tanto na estação seca como na chuvosa. Considerando as diretrizes da FAO houve restrição quanto ao uso para o sódio, nos meses de janeiro e março, e para o bicarbonato nos períodos de amostragem.
|
4 |
Nutrient limitation for coastal areas and estuaries in the Baltic Sea : Applying linear regression analysis and TN/TP ratio to determine the limiting nutrient / Det begränsande näringsämnet för kustområden i Östersjön : Användning av linjär regressionsanalys och TN/TP kvot för att bestämma det begränsande näringsämnetPersson, Magnus January 2017 (has links)
The purpose of this study was to determine the limiting nutrient in a set of coastal areas and estuaries in the Baltic Sea. Although the subject as been studied for several decades, no clear consensus has been reached in the scientific community as to whether primary production is limited by phosphorus or nitrogen. A total of five coastal areas, all located on the east coast of Sweden, were assessed regarding their limiting nutrient by using three methods. The first method was applying linear regression analysis on measured TP and TN concentration together with chlorophyll-a and Secchi depth. The data was collected from sampling programs stretching back to the 1970s and 80s, studying the summer period May to September for all sites but one, were the period April to October was studied. The second method calculated the TN/TP ratio during the summer period and compared it to the Redfield ratio. Thirdly, basic mass-balance calculations were carried out, with empirical data on the external loads and calibrated with the yearly average concentration in the surface water (0–10 m). From the calculations, both the annual external and internal load of TP and TN was obtained. The different TP and TN loads were likewise tested for a correlation with the measured summer chlorophyll-a concentration and Secchi depth. The results of using linear regression analysis on measured concentrations were mostly inconclusive, as the TP and TN concentrations for all sites and most years were related to each other. Consequently both nutrients often gave equal correlation coefficients. Similarly the TP and TN loads also matched each other for most sites and years, inherently obtaining the same inconclusive, but also contradictory results, as when using the measured concentrations. The TN/TP ratio indicated, for one site that it was limited by phosphorus and another site possibly nitrogen limitation. The ratio in the other sites periodically dropped between nitrogen and phosphorus limitation over the years. Thus it was difficult to draw an overall conclusion as to what nutrient was the limiting one for all the sites. However analysing the results from the individual sites showed that three of the five sites had signs of phosphorus limitation. Two factors were deemed as being the main reasons as to why the methods did not achieve more conclusive results. The first factor was the empirical data, which varied in frequency and extent over the studied time periods and between sites, making representative concentrations difficult to calculate and evaluate. The second was the matching trends between both the concentrations and the loads of TP and TN. To achieve a better result one nutrient could be increased or decreased while one remains relatively constant. The problem with such an experiment would be controlling the inflow of nutrients from the adjacent sea. / Syftet med detta projekt var att bestämma det begränsande näringsämnet för ett antal kustområden i Östersjön. Frågan huruvida fosfor eller kväve är det begränsande näringsämnet i kustområden runt Östersjön har varit omdiskuterad under flera år och undersökts vid ett flertal tillfällen. I denna studie testades tre metoder, i fem olika kustområden, med syftet att fastställa det begränsande näringsämnet. Först användes linjär regressionsanalys med uppmätta värden på TP och TN koncentrationer tillsammans med klorofyll-a och Secchidjup. Empirisk data insamlades från övervakningsprogram där prover tagits sedan 1970- och 80-talet. Medelvärden beräknades för perioden maj till september för alla områden förutom ett, där undersöktes perioden april till oktober. Sommarmedelvärdena för TN/TP kvoten analyserades också för alla områden med avseende på Redfield kvoten. Slutligen genomfördes massbalansberäkningar med data för de externa belastningarna av TP och TN, dessa beräkningar kalibrerades sedan med uppmätta värden på koncentrationen i ytvattnet (0–10 m). Utifrån beräkningarna erhölls värden på den externa och den interna belastningen. Dessa belastningar testades med linjär regression för ett samband med de uppmätta värdena på Secchidjup och klorofyll-a. Metoden att använda linjär regressionsanalys med empiriskt uppmätta koncentrationer och djup, gav generellt ett oklart resultat. Detta var en följd av att halterna av både TP och TN i regel följdes åt, vilket fick konsekvensen att korrelationskoefficienterna för TP och TN ofta var lika stora. Samma problem uppstod för regressionsanalysen med belastningarna, då även dessa ofta följde varandra, men även motsade resultatet med koncentrationerna. Analysen av TN/TP kvoten tydde på att ett område var fosforbegränsat och ett område möjligen var kvävebegränsat. För de övriga tre områdena skiftade TN/TP kvoten under åren mellan kväve- och fosforbegränsning. De oklara resultaten gjorde det svårt att dra en övergripande slutsats. Däremot vid analysen av de enskilda områdena uppvisade tre av de fem områdena tecken på fosforbegränsning, även om detta inte kunde med säkerhet fastställas. Det var huvudsakligen två faktorer vars inverkan anses ha haft stor betydelse för det oklara resultatet. Den första faktorn var uppmätt data, vars frekvens och omfattning skiljde sig avsevärt mellan år och platser. Följaktligen försvårades beräkningarna av koncentrationerna och tillförlitligheten i hur representativa värdena var. Den andra och avgörande faktorn var de matchande trenderna hos både koncentrationerna och belastningarna. För att förbättra resultatet kan ett näringsämne ändras, medan det andra näringsämnet hålls relativt konstant. Problemet med att genomföra ett sådant experiment skulle vara att kontrollera inflödet av näringsämnen från närliggande hav.
|
Page generated in 0.3824 seconds