• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parallel solution of linear programs

Smith, Edmund January 2013 (has links)
The factors limiting the performance of computer software periodically undergo sudden shifts, resulting from technological progress, and these shifts can have profound implications for the design of high performance codes. At the present time, the speed with which hardware can execute a single stream of instructions has reached a plateau. It is now the number of instruction streams that may be executed concurrently which underpins estimates of compute power, and with this change, a critical limitation on the performance of software has come to be the degree to which it can be parallelised. The research in this thesis is concerned with the means by which codes for linear programming may be adapted to this new hardware. For the most part, it is codes implementing the simplex method which will be discussed, though these have typically lower performance for single solves than those implementing interior point methods. However, the ability of the simplex method to rapidly re-solve a problem makes it at present indispensable as a subroutine for mixed integer programming. The long history of the simplex method as a practical technique, with applications in many industries and government, has led to such codes reaching a great level of sophistication. It would be unexpected in a research project such as this one to match the performance of top commercial codes with many years of development behind them. The simplex codes described in this thesis are, however, able to solve real problems of small to moderate size, rather than being confined to random or otherwise artificially generated instances. The remainder of this thesis is structured as follows. The rest of this chapter gives a brief overview of the essential elements of modern parallel hardware and of the linear programming problem. Both the simplex method and interior point methods are discussed, along with some of the key algorithmic enhancements required for such systems to solve real-world problems. Some background on the parallelisation of both types of code is given. The next chapter describes two standard simplex codes designed to exploit the current generation of hardware. i6 is a parallel standard simplex solver capable of being applied to a range of real problems, and showing exceptional performance for dense, square programs. i8 is also a parallel, standard simplex solver, but now implemented for graphics processing units (GPUs).
2

Linear Programming Tools and Approximation Algorithms for Combinatorial Optimization

Pritchard, David January 2009 (has links)
We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques. The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem. The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon.
3

Linear Programming Tools and Approximation Algorithms for Combinatorial Optimization

Pritchard, David January 2009 (has links)
We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques. The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem. The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon.
4

Scheduling for Reliability : complexity and Algorithms

Dufossé, Fanny 06 September 2011 (has links) (PDF)
This thesis deals with the mapping and the scheduling of workflows. In this context, we consider unreliable platforms, with processors subject to failures. In a first part, we consider a particular model of streaming applications : the filtering services. In this context, we aim at minimizing period and latency. We first neglect communication costs. In this model, we study scheduling problems on homogeneous and heterogeneous platforms. Then, the impact of communication costs on scheduling problems of a filtering application is studied. Finally, we consider the scheduling problem of such an application on a chain of processors. The theoretical complexity of any variant of this problem is proved. This filtering property can model the reliability of processors. The results of some computations are successfully computed, and some other ones are lost. We consider the more frequent failure types : transient failures. We aim efficient and reliable schedules. The complexity of many variants of this problem is proved. Two heuristics are proposed and compared using using simulations. Even if transient failures are the most common failures in classical grids, some particular type of platform are more concerned by other type of problems. Desktop grids are especially unstable. In this context, we want to execute iterative applications. All tasks are executed, then a synchronization occurs, and so on. Two variants of this problem are considered : applicationsof independent tasks, and applications where all tasks need to be executed at same speed. In both cases, the problem is first theoretically studied, then heuristics are proposed and compared using simulations.
5

Prices in Wholesale Electricity Markets and Demand Response

Aketi, Venkata Sesha Praneeth 02 June 2014 (has links)
No description available.
6

Scheduling for Reliability : complexity and Algorithms / Ordonnancement pour la Fiabilité : complexité et algorithmes

Dufossé, Fanny 06 September 2011 (has links)
Les travaux présentés dans cette thèse portent sur le placement et l’ordonnancement d’applications de flots de données. On se place dans le contexte de plates-formes composées de processeurs sujets à des pannes. Dans une première partie, on considère un type particulier d’applications de flots de données: les services filtrants. On étudie l'ordonnancement de telles applications sur des plates-formes homogènes et hétérogènes, d'abord sans tenir compte des coûts de communication, puis en les incluant dans le modèle. On considère enfin l’ordonnancement d’un tel calcul sur une chaîne de processeurs. Le comportement d’un service filtrant est comparable à celui d’un calcul effectué sur un processeur non fiable: certains résultats vont être calculés, et d’autres perdus. On étudie le modèle des pannes transitoires. On veut effectuer un calcul à la fois fiable et efficace. La complexité de différentes variantes de ce problème est démontrée. Deux heuristiques sont décrites, puis comparées expérimentalement. Si les pannes transitoires sont les pannes les plus fréquemment rencontrées sur des grilles de calculs classiques, certains types de plates-formes rencontrent d’autres types de défaillances. Les grilles de volontaires sont particulièrement instables. Sur ce type de plate-forme, on veut exécuter des calculs itératifs. Cette application est constituée soit de tâches indépendantes, soit de tâches couplées, qui doivent être calculées ensemble et au même rythme. Dans chaque cas, le problème est d’abord étudié théoriquement, puis des heuristiques sontproposées, et leur performances sont comparées. / This thesis deals with the mapping and the scheduling of workflows. In this context, we consider unreliable platforms, with processors subject to failures. In a first part, we consider a particular model of streaming applications : the filtering services. In this context, we aim at minimizing period and latency. We first neglect communication costs. In this model, we study scheduling problems on homogeneous and heterogeneous platforms. Then, the impact of communication costs on scheduling problems of a filtering application is studied. Finally, we consider the scheduling problem of such an application on a chain of processors. The theoretical complexity of any variant of this problem is proved. This filtering property can model the reliability of processors. The results of some computations are successfully computed, and some other ones are lost. We consider the more frequent failure types : transient failures. We aim efficient and reliable schedules. The complexity of many variants of this problem is proved. Two heuristics are proposed and compared using using simulations. Even if transient failures are the most common failures in classical grids, some particular type of platform are more concerned by other type of problems. Desktop grids are especially unstable. In this context, we want to execute iterative applications. All tasks are executed, then a synchronization occurs, and so on. Two variants of this problem are considered : applicationsof independent tasks, and applications where all tasks need to be executed at same speed. In both cases, the problem is first theoretically studied, then heuristics are proposed and compared using simulations.
7

[en] OPTIMIZATION OF BATTERY SWAPPING STATIONS WITH BATTERY HETEROGENEITY, CHARGING DEGRADATION AND PV-OPTION / [pt] OTIMIZAÇÃO DE ESTAÇÕES DE TROCA DE BATERIA COM BATERIAS HETEROGÊNEAS, DEGRADAÇÃO NA CARGA E OPÇÃO FOTOVOLTÁICA

NICKOLAS GUELLER ROCHA 27 March 2023 (has links)
[pt] Problemas de emissão de gases de efeito estufa vem sido amplamente discutidos nos últimos anos, uma vez que mais de 70 países já se comprometeram a uma economia neutra em carbono até 2050. A eletrificação dos modais de transporte tem sido ampliadas seguindo essas metas, onde os Veículos Elétricos (VEs) começam a ganhar participação sobre o mercado de Veículos com Motor de Combustão Interna (VMCI) por todo o mundo. Além da particular complexidade na comparação entre VEs e VMCIs, desafios envolvendo a natureza dos VEs e sua integração com as cidades, como a falta de locais públicos para recarga, também são críticos e interferem no seu desenvolvimento. Nesse contexto, este trabalho visa estudar o problema de uma Estação de Troca de Baterias (ETB), uma estrutura onde os usuários de VEs trocam suas baterias descarregadas por outras totalmente ou parcialmente carregadas. No intuito de simular as operações diárias do ETB e o cronograma de carregamento das baterias, um novo modelo de Programação Linear Inteira Mista (PLIM) é proposto, levando em consideração a heterogeneidade da bateria, o uso de geração fotovoltaica (PV) local e a degradação da bateria com base no perfil de carregamento. Uma coleção de métricas de operação do ETB é projetada para avaliar a qualidade da solução do modelo de cronograma proposto. É apresentado um experimento numérico que compreende quatro estudos de caso baseados em dados reais dos sistemas de energia e transporte dos EUA, contendo insights e análises sobre o uso da energia fotovoltaica e da rede, bem como uma comparação financeira do ETB com abordagens de cronograma de benchmarks relacionados, juntamente de sensibilidades no plano de dimensionamento do ETB e atendimento a clientes. / [en] Greenhouse gas emissions-related issues have been extensively discussed in the past years, with over 70 countries already committed to a carbon-neutral economy by 2050. The electrification of transportation modals has increased following these goals, where Electric Vehicles (EVs) are starting to take Internal Combustion Engine Vehicles (ICEV) market share all over the globe. Besides the particular complexity in comparing EVs and ICEVs, challenges involving the nature of EVs and their integration with cities, such as the lack of public locals for charging, are also critical and interfere with their development. In this context, this work aims at studying the problem of a Battery Swapping Station (BSS), a structure where the EVs users swap their depleted batteries for fully or partially charged ones. In order to simulate the BSS daily operations and batteries charging schedule, a novel Mixed Integer Linear Programming (MILP) model is proposed, taking into account battery heterogeneity, the use of local photovoltaic (PV) production and battery degradation based on charging profile. A collection of BSS operation metrics are designed to evaluate the solution quality of the proposed scheduling model. A numerical experiment comprising four case studies based on real data from the US power and transportation systems is presented, with insights and analyses on the PV and grid power use, as well as a BSS financial comparison against close-related benchmark scheduling approaches, together with sensitivities on BSS sizing plan and costumers attendance.

Page generated in 0.0697 seconds