Spelling suggestions: "subject:"1inear systems off difference equations"" "subject:"1inear systems oof difference equations""
1 |
Slabě zpožděné systémy lineárních diskrétních rovnic v R^3 / Weakly Delayed Systems of Linear Discrete Equations in R^3Šafařík, Jan January 2018 (has links)
Dizertační práce se zabývá konstrukcí obecného řešení slabě zpožděných systémů lineárních diskrétních rovnic v ${\mathbb R}^3$ tvaru \begin{equation*} x(k+1)=Ax(k)+Bx(k-m), \end{equation*} kde $m>0$ je kladné celé číslo, $x\colon \bZ_{-m}^{\infty}\to\bR^3$, $\bZ_{-m}^{\infty} := \{-m, -m+1, \dots, \infty\}$, $k\in\bZ_0^{\infty}$, $A=(a_{ij})$ a $B=(b_{ij})$ jsou konstantní $3\times 3$ matice. Charakteristické rovnice těchto systémů jsou identické s charakteristickými rovnicemi systému, který neobsahuje zpožděné členy. Jsou získána kriteria garantující, že daný systém je slabě zpožděný a následně jsou tato kritéria specifikována pro všechny možné případy Jordanova tvaru matice $A$. Systém je vyřešen pomocí metody, která ho transformuje na systém vyšší dimenze, ale bez zpoždění \begin{equation*} y(k+1)=\mathcal{A}y(k), \end{equation*} kde ${\mathrm{dim}}\ y = 3(m+1)$. Pomocí metod lineární algebry je možné najít Jordanovy formy matice $\mathcal{A}$ v závislosti na vlastních číslech matic $A$ and $B$. Tudíž lze nalézt obecné řešení nového systému a v důsledku toho pak odvodit obecné řešení počátečního systému.
|
2 |
Slabě zpožděné lineární rovinné systémy diskrétních rovnic / Weakly Delayed Linear Planar Systems of Discrete EquationsHalfarová, Hana January 2014 (has links)
Dizertační práce se zabývá slabě zpožděnými lineárními rovinnými systémemy s konstantními koeficienty. Charakteristická rovnice těchto systémů je identická s charakteristickou rovnicí systému, který neobsahuje zpožděné členy. V takovém případě se počáteční dimenze prostoru řešení mění po několika krocích na menší. V jistém smyslu je tato situace analogická podobnému jevu v teorii lineárních diferenciálních systémů s konstantními koeficienty a speciálním zpožděním, kdy původně nekonečně rozměrný prostor řešení (na počátečním intervalu) přejde po několika krocích do konečného prostoru řešení. V práci je pro každý možný případ kombinace kořenů charakteristické rovnice konstruováno obecné řešení daného systému a jsou formulovány výsledky o dimenzi prostoru řešení. Také je zkoumána stabilita řešení.
|
3 |
Sistemas dinâmicos discretos: estabilidade, comportamento assintótico e sincronização / Discrete dynamical systems: stability, asymptotic behavior and synchronizationBonomo, Wescley 06 June 2008 (has links)
Este trabalho é em parte baseado no livro The Stability and Control of Discrete Processes de Joseph P. LaSalle. Nós estudamos equações como x(n+1) = T(x(n)), onde T : \' R POT. m\' \' SETA\' \'R POT. m\' é uma aplicação contínua, com o sistema dinâmico associado \'PI\' (n,x) := \' T POT. n\' (x). Nós fornecemos condições suficientes para a estabilidade de equilíbrios usando o método direto de Liapunov. Também consideramos sistemas discretos da forma x(n+1)=T(n, x(n),\'lâmbda\' ) dependendo de uma parâmetro \' lâmbda\' e apresentamos resultados obtendo estimativas de atratores. Finalmente, nós apresentamos algumas simulações de sistemas acoplados como uma aplicação em sistemas de comunicação / This work is in part based on the book The Stability and Control of Discrete Processes of Joseph P. LaSalle. We studing equations as x(n+1) = T(x(n)), where T : \' R POT.m\' \' ARROW\' \' \' R POT.m\' is continuous transformation, with the associated dynamic system \'PI\' (n,x) := \' T POT.n\' (x). We provide suddicient conditions for stability of equilibria, using Liapunov direct method. We also consider nonautonomous discrete systems of the form x(n + 1) = T(n, x(n), \' lâmbda\') depending on the parameter \'lâmbda\' and present results obtaining uniform estimatives of attractors. We finally we present some simulations on synchronization of coupled systems as an application on communication systems
|
4 |
Sistemas dinâmicos discretos: estabilidade, comportamento assintótico e sincronização / Discrete dynamical systems: stability, asymptotic behavior and synchronizationWescley Bonomo 06 June 2008 (has links)
Este trabalho é em parte baseado no livro The Stability and Control of Discrete Processes de Joseph P. LaSalle. Nós estudamos equações como x(n+1) = T(x(n)), onde T : \' R POT. m\' \' SETA\' \'R POT. m\' é uma aplicação contínua, com o sistema dinâmico associado \'PI\' (n,x) := \' T POT. n\' (x). Nós fornecemos condições suficientes para a estabilidade de equilíbrios usando o método direto de Liapunov. Também consideramos sistemas discretos da forma x(n+1)=T(n, x(n),\'lâmbda\' ) dependendo de uma parâmetro \' lâmbda\' e apresentamos resultados obtendo estimativas de atratores. Finalmente, nós apresentamos algumas simulações de sistemas acoplados como uma aplicação em sistemas de comunicação / This work is in part based on the book The Stability and Control of Discrete Processes of Joseph P. LaSalle. We studing equations as x(n+1) = T(x(n)), where T : \' R POT.m\' \' ARROW\' \' \' R POT.m\' is continuous transformation, with the associated dynamic system \'PI\' (n,x) := \' T POT.n\' (x). We provide suddicient conditions for stability of equilibria, using Liapunov direct method. We also consider nonautonomous discrete systems of the form x(n + 1) = T(n, x(n), \' lâmbda\') depending on the parameter \'lâmbda\' and present results obtaining uniform estimatives of attractors. We finally we present some simulations on synchronization of coupled systems as an application on communication systems
|
Page generated in 0.1453 seconds