• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 11
  • 4
  • 4
  • 1
  • Tagged with
  • 50
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Experimental Investigation of Three-Dimensional Mechanisms in Low-Pressure Turbine Flutter

Vogt, Damian January 2005 (has links)
The continuous trend in gas turbine design towards lighter, more powerful and more reliable engines on one side and use of alternative fuels on the other side renders flutter problems as one of the paramount challenges in engine design. Flutter denotes a self-excited and self-sustained aeroelastic instability phenomenon that can lead to material fatigue and eventually damage of structure in a short period of time unless properly damped. The design for flutter safety involves the prediction of unsteady aerodynamics as well as structural dynamics that is mostly based on in-house developed numerical tools. While high confidence has been gained on the structural side unanticipated flutter occurrences during engine design, testing and operation evidence a need for enhanced validation of aerodynamic models despite the degree of sophistication attained. The continuous development of these models can only be based on the deepened understanding of underlying physical mechanisms from test data. As a matter of fact most flutter test cases treat the turbomachine flow in two-dimensional manner indicating that the problem is solved as plane representation at a certain radius rather than representing the complex annular geometry of a real engine. Such considerations do consequently not capture effects that are due to variations in the third dimension, i.e. in radial direction. In this light the present thesis has been formulated to study three-dimensional effects during flutter in the annular environment of a low-pressure turbine blade row and to describe the importance on prediction of flutter stability. The work has been conceived as compound experimental and computational work employing a new annular sector cascade test facility. The aeroelastic response phenomenon is studied in the influence coefficient domain having one blade oscillating in various three-dimensional rigid-body modes and measuring the unsteady response on several blades and at various radial positions. On the computational side a state-of-the-art industrial numerical prediction tool has been used that allowed for two-dimensional and three-dimensional linearized unsteady Euler analyses. The results suggest that considerable three-dimensional effects are present, which are harming prediction accuracy for flutter stability when employing a two-dimensional plane model. These effects are mainly apparent as radial gradient in unsteady response magnitude from tip to hub indicating that the sections closer to the hub experience higher aeroelastic response than their equivalent plane representatives. Other effects are due to turbomachinery-typical three-dimensional flow features such as hub endwall and tip leakage vortices, which considerably affect aeroelastic prediction accuracy. Both effects are of the same order of magnitude as effects of design parameters such as reduced frequency, flow velocity level and incidence. Although the overall behavior is captured fairly well when using two-dimensional simulations notable improvement has been demonstrated when modeling fully three-dimensional and including tip clearance.
32

Sonic Boom Minimization through Vehicle Shape Optimization and Probabilistic Acoustic Propagation

Rallabhandi, Sriram Kishore 18 April 2005 (has links)
Sonic boom annoyance is an important technical showstopper for commercial supersonic aircraft operations. It has been proposed that aircraft can be shaped to alleviate sonic boom. Choosing the right aircraft shape reflecting the design requirements is a fundamental and most important step that is usually over simplified in the conceptual stages of design by resorting to a qualitative selection of a baseline configuration based on historical designs and designers perspective. Final aircraft designs are attempted by minor shape modifications to this baseline configuration. This procedure may not yield large improvements in the objectives, especially when the baseline is chosen without a rigorous analysis procedure. Traditional analyses and implementations tend to have a complex algorithmic flow, tight coupling between tools used and computational limitations. Some of these shortcomings are overcome in this study and a diverse mix of tools is seamlessly integrated to provide a simple, yet powerful and automatic procedure for sonic boom minimization. A shape optimization procedure for supersonic aircraft design using better geometry generation and improved analysis tools has been successfully demonstrated. The geometry engine provides dynamic reconfiguration and efficient manipulation of various components to yield unstructured watertight geometries. The architecture supports an assimilation of different components and allows configuration changes to be made quickly and efficiently because changes are localized to each component. It also enables an automatic way to combine linear and non-linear analyses tools. It has been shown in this study that varying atmospheric conditions could have a huge impact on the sonic boom annoyance metrics and a quick way of obtaining probability estimates of relevant metrics was demonstrated. The well-accepted theoretical sonic boom minimization equations are generalized to a new form and the relevant equations are derived to yield increased flexibility in aircraft design process. Optimum aircraft shapes are obtained in the conceptual design stages weighing in various conflicting objectives. The unique shape optimization procedure in conjunction with parallel genetic algorithms improves the computational time of the analysis and allows quick exploration of the vast design space. The salient features of the final designs are explained. Future research recommendations are made.
33

Studies On The Dynamics And Stability Of Bicycles

Basu-Mandal, Pradipta 09 1900 (has links)
This thesis studies the dynamics and stability of some bicycles. The dynamics of idealized bicycles is of interest due to complexities associated with the behaviour of this seemingly simple machine. It is also useful as it can be a starting point for analysis of more complicated systems, such as motorcycles with suspensions, frame flexibility and thick tyres. Finally, accurate and reliable analyses of bicycles can provide benchmarks for checking the correctness of general multibody dynamics codes. The first part of the thesis deals with the derivation of fully nonlinear differential equations of motion for a bicycle. Lagrange’s equations are derived along with the constraint equations in an algorithmic way using computer algebra.Then equivalent equations are obtained numerically using a Newton-Euler formulation. The Newton-Euler formulation is less straightforward than the Lagrangian one and it requires the solution of a bigger system of linear equations in the unknowns. However, it is computationally faster because it has been implemented numerically, unlike Lagrange’s equations which involve long analytical expressions that need to be transferred to a numerical computing environment before being integrated. The two sets of equations are validated against each other using consistent initial conditions. The match obtained is, expectedly, very accurate. The second part of the thesis discusses the linearization of the full nonlinear equations of motion. Lagrange’s equations have been used.The equations are linearized and the corresponding eigenvalue problem studied. The eigenvalues are plotted as functions of the forward speed ν of the bicycle. Several eigenmodes, like weave, capsize, and a stable mode called caster, have been identified along with the speed intervals where they are dominant. The results obtained, for certain parameter values, are in complete numerical agreement with those obtained by other independent researchers, and further validate the equations of motion. The bicycle with these parameters is called the benchmark bicycle. The third part of the thesis makes a detailed and comprehensive study of hands-free circular motions of the benchmark bicycle. Various one-parameter families of circular motions have been identified. Three distinct families exist: (1)A handlebar-forward family, starting from capsize bifurcation off straight-line motion, and ending in an unstable static equilibrium with the frame perfectly upright, and the front wheel almost perpendicular. (2) A handlebar-reversed family, starting again from capsize bifurcation, but ending with the front wheel again steered straight, the bicycle spinning infinitely fast in small circles while lying flat in the ground plane. (3) Lastly, a family joining a similar flat spinning motion (with handlebar forward), to a handlebar-reversed limit, circling in dynamic balance at infinite speed, with the frame near upright and the front wheel almost perpendicular; the transition between handlebar forward and reversed is through moderate-speed circular pivoting with the rear wheel not rotating, and the bicycle virtually upright. In the fourth part of this thesis, some of the parameters (both geometrical and inertial) for the benchmark bicycle have been changed and the resulting different bicycles and their circular motions studied showing other families of circular motions. Finally, some of the circular motions have been examined, numerically and analytically, for stability.
34

Frequency Domain Computation Of Turbofan Exhaust Noise Radiation

Ulusoy, Yavuz Barbaros 01 May 2006 (has links) (PDF)
In this study, acoustic noise radiation through a duct in frequency domain is analyzed. Frequency domain linearized Euler equations are solved for turbofan exhaust noise propagation and radiation. The geometry in studied cases is assumed as axisymmetric. The acoustic waves are decomposed into periodic azimuthal modes. Characteristic boundary conditions, and buffer zone boundary conditions are employed. Iterative type pseudo time integration is employed. Nonuniform background flow effect on the radiation pattern is experienced. All computations are performed in parallel using MPI library routines in computer cluster. Results proved that the one with the buffer zone has a better radiation characteristic than the characteristic one because of absorbtion of spurious waves. It is seen that the efficiency of the buffer zone is frequency dependent.
35

Fluxo de carga AC linearizado associado a ferramenta MATLAB

Rossoni, Priscila January 2016 (has links)
Orientador: Prof. Dr. Edmarcio Antonio Belati / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2016. / Esta dissertação apresenta um estudo para sistemas de distribuição e transmissão de energia elétrica com Fluxo de Carga AC Linearizado (FCACL). Este estudo é baseado no Fluxo de Carga AC (FCAC) em que é realizada uma linearização nas equações de balanço das potências ativas e reativas utilizadas na modelagem original do FCAC. Ao contrário dos algoritmos de FCAC, esta técnica não requer um processo iterativo, o que resulta em uma metodologia rápida e robusta. O FCACL considera todos os acoplamentos do modelo tradicional de FCAC, tais como o acoplamento de potência ativa com os ângulos de fase e o acoplamento da potência reativa com as magnitudes de tensão, diferentemente do que ocorre no método tradicional de Fluxo de Carga DC (FCDC), que considera apenas a parte ativa do acoplamento. O método é adequado para estudos de contingência e de carregamento, e sendo indicado em situações em que há a necessidade de se obter soluções rápidas e repetidas. A grande vantagem é que o método não é iterativo e oferece soluções, mesmo quando FCAC tradicional diverge e apresenta mais precisão do que o FCDC. O método foi testado no sistema didático de transmissão de 3, 14, 30 e 118 barras e nos sistemas de distribuição de 34, 70 e 126 barras. Os resultados demonstram a eficácia do método. A metodologia proposta foi desenvolvida e implementada em ambiente Matlab®, de forma a compor a ferramenta computacional de análises de sistemas elétricos, a ANASEP. As soluções foram comparadas com os métodos de FCAC, FCDC e de Backward/Forward Sweep (BFS), estes dois últimos também uma contribuição para ferramenta que passará a ser identificada como ANASEP 2.0. / This dissertation presents a load flow method for electricity distribution and transmission system called AC Linearized Flow Power (LACLF). The method is based on the AC Load Flow (ACLF) which are held in the linearization equations of the Jacobian matrix. Unlike ACLF algorithm, this method does not require an iterative process, which results in a fast and robust method. The LACLF considers all the coupling ACLF, including the coupling of active power with the magnitude of voltage and reactive power coupling with the phase angle, different from the traditional DC load flow method (DCLF). The method is suitable for contingency studies and can be used when solutions quick, robust and repeatedly are requested. The big advantage is that the method is not iterative and offers solutions even where traditional ACLF diverges and more accurately than the DCLF. The method was applied to the distribution systems 34, 70 and 126 bus and applied to the transmission systems 3, 14, 30 and 118 bus. The partial results of the tests demonstrate the effectiveness of the methodology. The proposed methodology has been developed and implemented in Matlab® environment, in order to compose a computational tool for electrical system analysis, ANASEP. The solutions were compared with the methods of FCAC, FCDC and Backward / Forward Sweep (BFS), the latter two also a contribution to tool that had become identified as ANASEP 2.0.
36

Estruturas coerentes e modelos reduzidos para o escoamento ao redor de um cilindro no regime bidimensional periódico. / Coherent structures and reduced models for the flow past a cylinder within the two-dimensional periodic regime.

Iago de Carvalho Barbeiro 06 March 2012 (has links)
Esta tese trata o escoamento ao redor de um cilindro logo após a sua primeira instabilidade, dentro do seu regime bidimensional periódico. A abordagem é principalmente teórica, passa por experimentos e culmina em uma importante parte numérica que complementa a teoria com evidências e ilustrações. As principais contribuições são a análise sobre a composição modal da solução dentro do regime periódico e o método desenvolvido para identificar autovetores de uma linearização da equação de Navier-Stokes presentes em uma dada solução. As bases compostas pelos autovetores identificados servem para a projeção da equação de Navier-Stokes e dão a essência dos modelos reduzidos deste estudo. A aplicação numérica apresentada para Re = 60 traz duas iterações do processo, com duas bases de autovetores de dimensões 12 e 24. Os modelos reduzidos são numericamente estáveis e a sua integração apresenta custo várias ordens mais baixo que o da simulação numérica completa. As séries temporais das coordenadas e as bases de autovetores possibilitam a recomposição do escoamento e a sua comparação com a simulação numérica de referência. A análise de aderência foi baseada nas médias temporais, nos valores de Strouhal e na estrutura dos harmônicos. Ambos modelos reduzidos têm correspondência próxima com o comportamento assintótico do escoamento e a tendência convergente das iterações é clara. As simetrias espaciais e temporais dos harmônicos são facilmente identificadas na estrutura dos modelos, de forma que as bases construídas podem ser entendidas como conjuntos de estruturas coerentes do fenômeno. / This thesis concerns the flow past a cylinder just after its first bifurcation, within its two-dimensional periodic regime. The approach is mainly theoretical, goes through experiments and is concluded by an important numerical part which complements the theory with evidences and illustrations. The main contributions are the analysis concerning the modal composition of the solution within the periodic regime and a method to identify eigenvectors of some linearizaton of the Navier-Stokes equation participating on a given solution. The bases spanned by the identified eigenvectors are employed in the projection of the Navier-Stokes equation and are central to the reduced models of this study. The numerical results for Re = 60 present two iterations of the process, with two bases of dimensions 12 e 24. The reduced models are numerically stable and their integration is many orders less costly than that of the full simulation. The time series of the modal coordinates and the eigenvectors bases allow the recomposition of the flow and its comparison with the full simulation results. The convergence analysis was based on the time averages, the Strouhal number values and the harmonic structure. Both reduced models have close correspondence with the asymptotic behavior of the flow and the convergent trend of the iterations is clear. The space and time symmetries of the harmonics have a simple representation within the structure of the models, therefore the identified bases can be understood as sets of coherent structures of the phenomenon.
37

Řešení problémů aeroakustiky pomocí bezsíťových metod / Meshfree methods for computational aeroacoustics

Bajko, Jaroslav January 2013 (has links)
Bezsíťové metody reprezentují alternativu ke standardním diskretizačním technikám, které pro svůj chod vyžadují síť. V posledních desetiletích bylo vynaloženo mnoho úsilí k ověření konkurenceschopnosti bezsíťových metod v různých inženýrských odvětvích. Diplomová práce je zaměřena na aplikaci vhodné bezsíťové metody ve výpočetní aeroakustice. Stěžejní část této práce se zabývá úlohami šíření zvuku, které lze modelovat pomocí linearizovaných Eulerových rovnic. Obecně lze tyto rovnice zařadit mezi lineární hyperbolické systémy. Pro úlohy aeroakustiky se jako vhodná bezsíťová metoda jeví Finite point method (FPM), která byla úspěšně použita pro řešení úloh dynamiky tekutin. Odvozením této metody a návrhy k dosažení vysoké přesnosti se věnuje další část práce. Úlohy šíření zvuku se známým řešením jsou testovány vlastním softwarem vyvinutým speciálně pro tyto účely.
38

Vytvoření Sparse adaptéru pro infrastrukturu Code Listener / Creation of Sparse Adapter for the Code Listener Infrastructure

Pokorný, Jan January 2012 (has links)
Program checking is indisputably important, especially if originating in formal methods. VeriFIT at FIT BUT uses custom Code Listener (CL) infrastructure modularly interconnecting the front-end, typically a code parser adapter, and the back-end, typically an analyser. Our aim is to offer a former as a compact alternative to existing GCC compiler plug-in. This adapter uses linearized code mediated by sparse library for static analysis of programs in C. According to the experiments with one of the main CL analysers, Predator tool and its tests suite, our product - clsp program - is successful successful in roughly 75% of cases in comparison with the GCC plug-in. Further improvements are expected.
39

Implicit Least Squares Kinetic Upwind Method (LSKUM) And Implicit LSKUM Based On Entropy Variables (q-LSKUM)

Swarup, A Sri Sakti 07 1900 (has links)
With increasing demand for computational solutions of fluid dynamical problems, researchers around the world are working on the development of highly robust numerical schemes capable of solving flow problems around complex geometries arising in Aerospace engineering. Also considerable time and effort are devoted to development of convergence acceleration devices, for reducing the computational time required for such numerical solutions. Reduction in run times is very vital for production codes which are used many times in design cycle. In this present work, we consider a numerical scheme called LSKUM capable of operating on any arbitrary distribution of points. LSKUM is being used in CFD center (IIsc) and DRDL (Hyderabad) to compute flows around practical geometries and presently these LSKUM based codes are explicit- It has been observed already by the earlier researchers that the explicit schemes for these methods are robust. Therefore, it is absolutely essential to consider the possibility of accelerating explicit LSKUM by making it LSKUM-Implicit. The present thesis focuses on such a study. We start with two kinetic schemes namely Least Squares Kinetic Upwind Method (LSKUM) and LSKUM based on entropy variables (q-LSKUM). We have developed the following two implicit schemes using LSKUM and q-LSKUM. They are (i)Non-Linear Iterative Implicit Scheme called LSKUM-NII. (ii)Linearized Beam and Warming implicit Scheme, called LSKUM-BW. For the purpose of demonstration of efficiency of the newly developed above implicit schemes, we have considered flow past NACA0012 airfoil as a test example. In this regard we have tested these implicit schemes for flow regimes mentioned below •Subsonic Case: M∞ = 0.63, a.o.a = 2.0° •Transonic Case: M∞ = 0.85, a.o.a = 1.0° The speedup of the above two implicit schemes has been studied in this thesis by operating them on different grid sizes given below •Coarse Grid: 4074 points •Medium Grid: 8088 points •Fine Grid: 16594 points The results obtained by running these implicit schemes are found to be very much encouraging. It has been observed that these newly developed implicit schemes give as much as 2.8 times speedup compared to their corresponding explicit versions. Further improvement is possible by combining LKSUM-Implicit with modern iterative methods of solving resultant algebraic equations. The present work is a first step towards this objective.
40

On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces

Hofmann, B. 30 October 1998 (has links) (PDF)
In this paper, we study ill-posedness concepts of nonlinear and linear inverse problems in a Hilbert space setting. We define local ill-posedness of a nonlinear operator equation $F(x) = y_0$ in a solution point $x_0$ and the interplay between the nonlinear problem and its linearization using the Frechet derivative $F\acent(x_0)$ . To find an appropriate ill-posedness concept for the linarized equation we define intrinsic ill-posedness for linear operator equations $Ax = y$ and compare this approach with the ill-posedness definitions due to Hadamard and Nashed.

Page generated in 0.2568 seconds