• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 917
  • 711
  • 195
  • 135
  • 35
  • 34
  • 32
  • 17
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 4
  • Tagged with
  • 2560
  • 333
  • 286
  • 273
  • 264
  • 193
  • 191
  • 187
  • 180
  • 175
  • 174
  • 172
  • 162
  • 156
  • 147
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Investigation of the photocatalytic lithographic deposition of metals in sealed microfluidic devices on TiO2 surfaces

Castellana, Edward Thomas 15 May 2009 (has links)
The research presented within this dissertation explores the photocatalytic deposition of metal carried out within sealed microfluidic channels. Micro scale patterning of metals inside sealed microchannels is investigated as well as nanoscale control over the surface morphology of the nanoparticles making up the patterns. This is achieved by controlling solution conditions during deposition. Finally, the nanoparticle patterns are used in fabricating a sensor device, which demonstrates the ability to address multiple patches within a sealed channel with different surface chemistries. Also presented here is the construction of the first epifluorescence/total internal reflection macroscope. Its ability to carry out high numerical aperture imaging of large arrays of solid supported phospholipid bilayers is explored. For this, three experiments are carried out. First, imaging of a 63 element array where every other box contains a different bilayer is preformed, demonstrating the ability to address large scale arrays by hand. Next, a protein binding experiment is preformed using two different arrays of increasing ligand density on the same chip. Finally, a two-dimensional array of mixed fluorescent dyes contained within solid supported lipid bilayers is imaged illustrating the ability of the instrument to acquire fluorescent resonance energy transfer data. Additionally, the design and fabrication of an improved array chip and addressing method is presented. Using this new array chip and addressing method in conjunction with the epifluorescence/total internal reflection macroscope should provide an efficient platform for high throughput screening of important biological processes which occur at the surfaces of cell membranes.
192

SENSING AND SEPARATING BIOMOLECULES AT BIOINTERFACES

Jung, Hyunsook 2009 May 1900 (has links)
Ligand-receptor interactions are ubiquitous on cell membranes. Indeed, many important physiological functions primarily involve such interactions. These include cell signaling, pathogen binding, trafficking of lymphocytes, and the immune response.1-4 Therefore, studying ligand-receptor interactions at appropriate model membrane is of importance for both proper understanding of biological functions and applications to biosensors and bioseparations. Supported lipid bilayers are composed of the same lipid molecules found in the plasma cell membranes of living cells and possess the same two-dimensional fluidity as cell membranes, making them capable of mimicking the cell surface. Moreover, supported lipid bilayer-based in vitro assays are appealing because they require only very small sample volumes and they are suitable for multiplexing and high-throughput screening. Recently, our laboratory has combined supported lipid bilayer-coated microfluidic platforms with total internal reflection fluorescence microscopy to obtain equilibrium dissociation constant data for protein-ligand interactions. Using this method, it was found that equilibrium dissociation constants of antibody-ligand interactions at lipid membrane interfaces can be strongly affected by ligand lipophilicity and linker length/structure. These results are described in Chapter III. Monitoring protein-ligand interactions is routinely performed by fluorescently labeling the proteins of interest. Protein labeling can, however, interfere with detection measurements and be highly inconvenient to employ. To solve these problems, a simple and highly sensitive technique for detection of protein-ligand binding at biointerfaces has been developed. The method is based upon modulation of the interfacial pH when the protein binds. This change is detected by pH-sensitive fluorescent dye molecules embedded into the biointerface. The dye fluoresces strongly in the protonated state but becomes inactive upon deprotonation. These results are demonstrated in Chapter IV. Finally, the study of supported lipid bilayer-based electrophoresis is described in Chapter V. Bilayer electrophoresis is an attractive alternative to gel electrophoresis for the separation of membrane components such as lipids and membrane proteins because it is run in native-like environments and avoids exposing the analytes of interest to harsh chemicals. In this study, lipid rafts of varying size were used as separation matrices to separate two similar lipids with different alkyl chains. Lipid rafts of varying size were formed by a process controlled by varying treatment of the solid substrate. Depending on which method was employed, the results showed that lipid raft size could be modulated over five orders of magnitude. Moreover, it was found that the electrophoretic separation of the two lipid components depended on the size of rafts in the bilayer matrix.
193

Synthesis of phospholipid analogs /

Flippin, Stefanie Lee. January 2003 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2003.
194

Interaction Between Antimicrobial Peptides and Phospholipid Membranes Effects of Peptide Length and Composition /

Ringstad, Lovisa. January 2009 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2009. / Härtill 5 uppsatser.
195

Glycerol-3-phosphate acyltransferase regulates T cell effector function and metabolism

Faris, Robert Allen, Jr. 17 October 2013 (has links)
The aged T cell is characterized by decreased responsiveness to stimulation. Aging is associated with reduced membrane glycerophospholipid (GPL) to cholesterol ratios so it is interesting that deletion of mitochondrial glycerol-3-phosphate acyltransferase-1 which catalyzes the first step in de novo GPL synthesis induces an aged T cell phenotype in otherwise healthy mice. GPAT-1 could regulate T cell function through three possible mechanisms: maintenance of membrane GPL ratios and membrane based signaling, providing a specific substrate for downstream signaling, or direct regulation of cellular metabolism. Therefore, the goal of this project was to determine whether these mechanisms contribute to the dysfunctional T cell phenotype observed with decreased GPAT-1 activity. T cell stimulation requires significant upregulation of metabolic processes to drive clonal expansion and cytokine production. T cell dysfunction in GPAT-1 knockout mice may be partially explained by altered metabolic function. We found that GPAT-1 KO T cells have significantly reduced basal respiration rates and spare respiratory capacity which is not compensated for by increased glycolytic metabolism suggesting an inherent metabolic defect in GPAT-1 KO T cells. To better understand mechanistically how GPAT-1 regulates T cell function we moved into the Jurkat T cell line and found that shRNA mediated knockdown of the human isoform of GPAT-1 (GPAM) recapitulated key aspects of the dysfunctional T cell phenotype we observed in the mouse including highly significant reductions in IL-2 production and altered membrane GPL to cholesterol ratios. Phosphatidic acid addition was not capable of rescuing these deficiencies suggesting that GPAT-1/GPAM activity is required for proper T cell function. This was the first time that GPAT-1 activity has been shown to be important for T cell function in a non-murine model system and strongly suggests that GPAT-1/GPAM deficiency regulates T cell function at the cellular level. We further demonstrate that phosphorylation of ZAP-70 a proximal effector of T cell activation is significantly reduced in GPAM knock down Jurkat T cells, suggesting that membrane based signaling is dysfunctional. Taken together these data suggest that GPAT-1 is necessary for regulating cellular energy demands in T cells and essential for optimal T cell activation following stimulation. / text
196

Effect of hydroxytyrosol supplementation on the lipid profile and metabolic disease risk markers in healthy men

Burns, James Dorsey 03 December 2013 (has links)
Hydroxytyrosol (HT) has been found to be a potent antioxidant and hypocholesterolemic agent in various animal models of disease including dyslipidemia, atherosclerosis, and diabetes. Therefore, the purpose of this study was to examine the effects of hydroxytyrosol (HT) supplementation on the lipid profile and metabolic risk markers in recreationally active men. Sixty-one (n = 61) subjects (21.46 ± 0.22 yrs, 179.46 ± 0.79 cm, 78.91 ± 1.19 kg) consumed HT in either a high dose (HI, 150 mg HT; n = 22), a low dose (LO, 50 mg HT; n = 20), or a placebo (PLA; n = 19) every day for 6 weeks. Blood draws were obtained at baseline, 14, 28, and 39 days under fasting conditions. Analyzed were the components of the plasma lipid profile: total cholesterol (TC), high density lipoprotein cholesterol (HDLc), the TC:HDLc fraction, low density lipoprotein cholesterol (LDLc), very low density lipoprotein cholesterol (VLDLc), and triglycerides (Tg); and markers of metabolic risk: uric acid, lipase, hemoglobin (Hb), glycated hemoglobin (HbA1c), and blood glucose (BG). The primary finding was that HT, in either HI or LO dosages did not cause clinically meaningful changes in the blood lipid profile or markers of metabolic risk. Subjects in the HI group experienced a small big significant increase in fasting blood glucose, while those in the PLA group experienced a significant increase in VLDLc concentration. In both cases, however, the mean values remained within their respective healthy reference ranges. Whether these changes would persist beyond the 6-week course of this study is not known. While no improvements were seen in any of our selected measures, these results indicate that HT supplementation, ranging from 50 to 150 mg/day, is safe to consume for durations up to 6 weeks in healthy young men. By maintaining the lipid profile and metabolic risk markers within a healthy range, it is possible that HT may impart a degree of protection against cardiovascular and metabolic disease risk, but such an effect may only be apparent when the plasma lipid and/or metabolic risk profile is abnormal. / text
197

The effect of 2E,4E-decadienal on lipid-related gene expression in Phaeodactylum tricornutum

Beck, Emily Christine 10 December 2013 (has links)
Microalgae have been proposed as a potential feedstock for biofuel production, and as a result, interest in the biology of these organisms has intensified. These organisms also synthesize lipids that are vital to human health and nutrition. Stress has been shown to have an effect on lipid composition and gene expression in microalgae, but many studies have focused on the effects of abiotic stressors. The purpose of this study was to investigate the effect of biotic stress on lipid-related gene expression in Phaeodactylum tricornutum, a model species of microalgae. The source of biotic stress used in this study was 2E,4E/Z-decadienal, a diatom-derived oxylipin that has been shown to function as a stress signal among diatoms. Real-time RT-qPCR analysis revealed that expression of a patatin-like phospholipase was significantly decreased in decadienal-treated cultures as compared to a solvent control. The expression of a delta-9 desaturase gene believed to be responsible for production of 16:1 fatty acids was increased by a factor of 12. FabI, a gene involved in fatty acid biosynthesis, and PtD5a, which codes for an ER-localized desaturase, were both down-regulated in cells exposed to decadienal. However, changes in expression were only shown to be significant for the patatin-like phospholipase gene. Increased expression of the delta-9 desaturase gene may be a protective mechanism against infection from pathogens, since 16:1 fatty acids have been shown to have antibacterial properties. Regulation of membrane desaturation may also serve to stabilize photosynthetic membranes during times of stress. The down-regulation of the phospholipase gene was surprising, since the release of fatty acids from membrane lipids for oxylipin production is a common response to stress. It is recommended that this experiment be improved upon and expanded in order to determine whether the results obtained are reproducible and how these changes in gene expression correlate with physiological effects. / text
198

SREBP: A Key Effector of mTORC1 Signaling in Metabolism and Cancer

Yecies, Jessica 02 January 2013 (has links)
The mammalian target of rapamycin complex 1 (mTORC1), a master regulator of cell growth and proliferation, is aberrantly activated in cancer, genetic tumor syndromes and obesity. Much progress has been made to understand the upstream pathways that regulate mTORC1, most of which converge upon its negative regulator, the Tuberous Sclerosis Complex (TSC) 1-TSC2 complex. However, the cell intrinsic consequences of aberrant mTORC1 activation remain poorly characterized. Using systems in which mTORC1 is constitutively activated by genetic loss of TSC1 or TSC2 and pharmacologically inhibited by treatment with an mTORC1-specific inhibitor rapamycin, we have identified that mTORC1 controls specific aspects of cellular metabolism, including glycolysis, the pentose phosphate pathway, and de novo lipogenesis. Induction of the pentose phosphate pathway and de novo lipogenesis is achieved by activation of a transcriptional program affecting metabolic gene targets of sterol regulatory element-binding protein (SREBP). We have demonstrated that mTORC1 stimulates the accumulation of processed, active SREBP, although details of the molecular mechanism remain to be elucidated. To understand the physiological and pathological relevance of mTORC1-dependent activation of SREBPs and lipogenesis, we explored these findings in the liver and in cancer. While we find that the induction of hepatic SREBP1c and lipogenesis by insulin requires mTORC1, mTORC1 activation is not sufficient to stimulate hepatic SREBP1c in the absence of Akt signaling, revealing the existence of an additional downstream pathway also required for this induction. We demonstrate that this mTORC1-independent pathway involves Akt-mediated suppression of Insig2a, a liver-specific transcript encoding the SREBP1c inhibitor INSIG2. In cancer, our initial findings demonstrate that mTORC1 plays a role downstream of TSC-deficiency and oncogenic PIK3CA and K-Ras to activate lipogenic SREBP targets and de novo lipogenesis. Further studies of the connection between mTORC1 and SREBPs in disease may offer insights into novel therapeutic approaches.
199

Investigations of effects of garlic materials upon risk factors of atherosclerosis

Zhang, Xiaohua January 2000 (has links)
A brief review was provided of lipid metabolism, mechanisms of lipid lowering and coronary heart disease risk factors (including the role of antioxidants). In addition, studies of lipid-lowering and other anti-atherosclerotic effects of garlic materials were also reviewed. Evaluation and development of techniques required to perform studies of the anti-atherosclerotic effects of garlic were implemented, including evaluation of methods for measuring total antioxidant capacity and the development of methods for the rapid isolation of low density lipoprotein (LDL). The main objective of this project was to investigate the effects of garlic upon plasma lipids in rats and healthy human subjects and the effects upon antioxidant status in healthy human subjects. In a long-term study with old male rats, a low dose of garlic oil (c. O.5mg/Kg body weight/day) for 12.5 weeks provided in a high fat diet produced no significant reduction in plasma lipids or glucose. Upward trends in plasma lipids early in the treatment period were similar to those reported from several previous studies in which eventual reductions in plasma lipids were observed suggesting the possibility of a small effect of garlic oil upon lipid metabolism. Two randomised, double-blind, placebo-controlled human studies were carried out to investigate the effects of capsules containing garlic oil dissolved in vegetable oil upon coronary heart disease risk factors in normal subjects. In the first study, 8.2 mg/day of garlic oil (or placebo) capsules were given to 51 subjects over an I 1- week period. 95% confidence intervals were calculated for differences between garlic oil and placebo groups of changes in plasma lipids, glucose and total antioxidant capacity between baseline and end-oftreatment. No significant effects were observed, but it was found that plasma lipids and glucose trends were more favourable with garlic oil treatment. Effects of garlic oil over placebo for cholesterol-related variables and glucose were in opposite directions for males and females and this interaction between genders reached significance for high density lipoprotein cholesterol, total cholesterol/high density lipoprotein cholesterol ratio, calculated low density lipoprotein cholesterol and glucose of plasma. The strong gender effect of garlic oil evidenced for plasma lipids and glucose implies potent effects of garlic oil and suggests future garlic studies should include gender analyses. In the second human study, 12 mg/day garlic oil (or placebo) capsules were given to 27 trained young male athletes for 16 weeks. 95% confidence intervals were calculated for differences between garlic oil and placebo groups of changes in plasma lipids, total antioxidant capacity and LDL composition between baseline and end-of-treatment. It was found that the reduction in plasma triglycerides (p=O.09) of the garlic oil group in comparison with the placebo group was accompanied by increases in density, a significant reduction in triglycerides / protein and a trend towards reduction of cholesterol/protein of the LDL fraction. A trend towards reduced total antioxidant capacity / protein of LDL appear to reflect garlic oil effects upon lipid composition of LDL rather than directly upon antioxidants. Non-significant trends towards small improvements in maximal oxygen intake test-duration and less plasma glucose depletion with garlic oil were observed. Overall, the results from the human studies provide some encouragement to the view that garlic oil could reduce coronary heart disease risk in normal persons and that this possibility deserves further investigation.
200

Interrogation of EpoR Fidelity in Myelodysplastic Syndrome Hematopoiesis and Stabilization by the Immunomodulatory Agent, Lenalidomide

Mcgraw, Kathy Lynn 01 January 2013 (has links)
Myelodysplastic syndromes (MDS) include a spectrum of stem cell malignancies characterized by ineffective hematopoiesis and predisposition to acute myeloid leukemia (AML) transformation. Patients are predominantly older (greater than 60 years old), with progressive cytopenias resulting from ineffective and cytologically dysplastic hematopoiesis. MDS subtypes are classified by morphologic features and bone marrow blast percentage, as well as cytogenetic pattern, as is the case for deletion 5q MDS. Interstitial deletion of the long arm of chromosome 5, del(5q), is the most common chromosomal abnormality in patients with MDS, and the 5q- syndrome, represents a distinct subset of del(5q) MDS characterized by an isolated deletion, megakaryocyte dysplasia, hypoplastic anemia, and an indolent natural history. MDS risk stratification is most commonly based on the International Prognostic Scoring System (IPSS) with survival outcomes ranging from a few months to many years based on risk factors. There are several therapeutic options for MDS including hematopoietic growth factors, immunosuppressive therapy, azanucleosides, and allogeneic stem cell transplant, however, there is still a need for more effective treatment options, particularly targeted therapeutics. One of the most effective treatments for MDS is selective for del(5q) MDS, and is the second generation immunomodulatory agent, lenalidomide (LEN). LEN is an analog of the known teratogen, thalidomide, and has broad biological effects including selective cytotoxicity to del(5q) clones, activation of T-cells, and expansion of erythroid precursors. In patients with del(5q) MDS, LEN is effective in up to 75% of patients, however, 50% of patients will become resistant within 2-3 years of treatment response. Studies in normal hematopoietic progenitors have shown that LEN induces expansion of the primitive erythroid precursors, which our laboratory has shown is accompanied by sensitization of progenitors to ligand induced erythropoietin receptor (EpoR) signaling. This sensitization is evidenced by increased and prolonged activation of the Signal Transducer and Activator of Transcription 5 (STAT5), compared to Epo stimulation alone. Although EpoR signaling is augmented by LEN, the exact mechanisms by which this is mediated to result in erythroid expansion are not fully characterized. In del(5q) MDS, we have shown that LEN selectively suppresses del(5q) clones via inhibition of the haploinsufficient phosphatases Cdc25c and PP2a, as well as stabilizing the human homolog of the murine double minute-2 protein (MDM2) to decrease expression of the tumor suppressor, p53, however, the mechanisms of action of LEN in non-del(5q) MDS remains elusive. Although most anemic MDS patients have normal or elevated endogenous levels of Epo, as well as comparable levels of progenitor EpoR density relative to healthy individuals, the biologic pathology underlying the impaired EpoR signaling in MDS is poorly defined. Recent reports have shown that membrane microdomains are important for T-cell, c-kit, and integrin signaling, however, there have been no reports on EpoR membrane localization. Lipid rafts are discrete membrane entities that provide platforms by which receptors aggregate and initiate downstream signaling. Furthermore, reports have indicated that there is a decrease in lipid raft density in GM-CSF primed MDS neutrophils, that consequently impaired production of reactive oxygen species (ROS) after fMLP stimulation, suggesting a role of rafts in MDS disease biology. Based on the role of rafts in signaling, and potential role in MDS pathogenesis, we sought to determine whether there was specific membrane localization of EpoR to the raft fractions, and whether disruption of rafts in MDS erythroids could impair EpoR signaling. To address this, we first examined the membrane localization of EpoR on the cell surface. We show here that EpoR translocates to lipid rafts in both erythroid progenitor cell lines as well as primary progenitor cells after stimulation by Epo. Furthermore, we found that Epo stimulation increases the assembly of lipid rafts, as well as the aggregation of rafts on the cell surface. Epo stimulation not only promoted the recruitment of EpoR into the raft fractions, but also downstream signaling intermediates such as Janus kinase 2 (Jak2), STAT5, and Lyn kinase. Moreover, a negative regulator of EpoR signaling, the CD45 tyrosine phosphatase, was redistributed outside of raft fractions after Epo stimulation, potentially enhancing receptor signal competence. Furthermore, disruption of lipid rafts by depletion of membrane cholesterol with MâCD (methyl-β-cyclodextrin) inhibited EpoR signaling in both cell lines and primary bone marrow progenitor cells. Additionally, we found that inhibition of Rho-associated, coiled-coil containing protein kinase (ROCK) and/or Ras-related C3 botulinium toxin substrate 1 (Rac1), blocked the recruitment of the receptor into the raft fractions indicating a critical role of these GTPases, and associated proteins, in the transport and localization of EpoR into raft microdomains. We next asked whether LEN could alter lipid raft assembly in erythroid precursors in the absence of Epo. LEN not only induced raft formation and aggregation but also increased F-actin polymerization. Similar to Epo stimulation, LEN alone was able to induce the recruitment of EpoR, Jak2, and STAT5 into raft fractions. Additionally, CD45 was redistributed outside of raft fractions after LEN treatment. Similarly, inhibition of ROCK blocked LEN induced raft formation and F-actin polymerization, indicating that LEN utilized effectors shared by Epo. Furthermore, LEN was able to increase raft density in raft deficient primary MDS erythroid progenitors. These data demonstrate that LEN may enhance erythroid expansion via induction of EpoR signaling competent raft platforms, to enhance survival and differentiation transcriptional response. Recently, ribosomal protein (RP), S-14, gene (RPS14) haplodeficiency was found to be a key determinant of the hypoplastic anemia in del(5q) MDS. Allelic loss of RPS14 compromises ribosome assembly, thereby causing nucleolar stress and release of free RPs that bind to and promote the degradation of MDM2, the principal negative regulator of p53. As a result, the accumulation of RPs causes lineage restricted stabilization of p53 in erythroid precursors. Our laboratory and colleagues confirmed that cellular p53 expression levels were elevated in del(5q) erythroid precursors, and that LEN decreased expression in responding patients. However, at the time of LEN treatment failure, p53 expression was again elevated at levels exceeding those at baseline. These results suggest that LEN is initially able to reverse p53 accumulation levels and that this action may be a mechanism by which LEN is selectively cytotoxic to del(5q) clones. Subsequent studies showed that LEN inhibits the cereblon E3 ubiquitin ligase complex, the newly discovered target of LEN. Cereblon has been reported to be the principal protein involved in thalidomide induced teratogenicity. Furthermore, the cytotoxic activity of LEN in multiple myeloma is dependent on cereblon. Our laboratory found that LEN inhibits the auto-ubiquitination of MDM2, thereby stabilizing the protein, and promoting ubiquitination of and ultimately the degradation of p53. Additionally, we found that LEN blocked the binding of free ribosomal proteins to MDM2, which are liberated from the nucleosome by ribosomal stress from RPS14 haploinsufficiency, consequently stabilizing the E3-ubiquitin ligase and fostering p53 degradation. In non-del(5q) MDS there is no cytotoxicity of MDS clones by LEN, suggesting an alternative method of erythropoiesis rescue. Although we know that LEN promotes the formation of signaling platforms, and recruitment of EpoR, we wished to determine whether there was an effect of LEN on EpoR expression, as EpoR expression is controlled through ubiquitination and proteasomal degradation. Treatment of erythroid progenitor cell lines and primary erythroid precursors with LEN increased cellular expression of Jak2-associated EpoR in a concentration dependent manner. There was no change in mRNA expression, supporting a post transcriptional mechanism. We then investigated whether receptor up-regulation was limited to EpoR, or included other cytokine receptors. We found that LEN induced expression of another Jak2 associated Type I receptor, IL3-R, but did not alter cellular expression of c-kit, a Type II cytokine receptor. Because Type I cytokine receptor turnover is regulated by a shared E3-ubiquitin ligase, and LEN inhibited both MDM2 and cereblon, we evaluated the effects of LEN on the E3-ubiquitin ligase, Ring Finger Protein-41 (RNF41), which regulates steady state or ligand independent, Jak2 associated Type I receptor internalization. We found that LEN inhibited the ubiquitination activity of RNF41, ultimately stabilizing EpoR membrane residence and increasing expression. In summary, MDS patients display ineffective hematopoiesis likely in part to decreased lipid raft assembly. Stimulation by Epo, or treatment by LEN, not only induced raft formation, but also induced the recruitment of both growth factor receptor, and downstream signaling intermediates into raft fractions to enhance EpoR signal fidelity. We have shown here two methods by which LEN may augment EpoR signaling. First, LEN increases lipid rafts and promotes recruitment of signaling effectors. Second, LEN increases and stabilizes the expression of EpoR through inhibition of the E3 ubiquitin ligase, RNF41. Therefore, we suggest here that LEN may have broad E3 ubiquitin ligase inhibitory effects. These data also indicate that lipid raft upregulation by LEN is mediated through GTPases, suggesting that GTPase activation may also occur via inhibition of specific E3 ubiquitin ligases, a question to be addressed in future studies.

Page generated in 0.058 seconds