• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of Supported Lipid Bilayers and Detergent Resistant Membranes by Atomic Force Microscopy

Chen, Shiau-Chian 27 July 2011 (has links)
Supported lipid bilayers (SLBs) are unique model systems for biological membranes. SLBs can be formed by fusing liposomes on solid substrates, which can be characterized by a variety of surface analytical techniques, such as Atomic Force Microscopy (AFM), X-ray diffraction, Quartz Crystal Microbalance (QCM), etc. In this study we used AFM to investigate the dynamic process of the formation of SLBs from liposomes in solutions containing metal ions and phase separation between different lipids as a function of temperature. Divalent cations, Ni2+ in particular, was found to be critical to the deposition of bilayers. Lipid rafts are plasma membrane microdomains rich in sphingolipid and cholesterol forming a liquid ordered phase surrounded by a liquid disordered phase. Lipid rafts are insoluble in cold non-ionic detergents, also called Detergent Resistant Membranes (DRMs). The interaction behaviors between detergent (Triton X-100) and mixed bilayers (DOPC/DPPC and DOPC/SpM) were studied by AFM. The way lipid bilayers were solubilized by Triton X-100 was quite different below and above its critical micelle concentration (CMC), and the SpM domains were found to be resistant to detergent extraction in the cold.
12

Modulatory effect of lipid compositions on phospholipase A2 activity

Chiou, Yi-ling 17 July 2012 (has links)
The goal of the present study is to elucidate the modulatory effect of lipid compositions on phospholipase A2 (PLA2) activity. Sphingomyelin (SM) incorporation inhibited catalytic activity and membrane-damaging activity of native and mutated PLA2 toward egg yolk phosphatidylcholine (EYPC) vesicles. The inhibitory effects were through the reduction of membrane fluidity and modulation of the mode of membrane binding of PLA2 at water/lipid interface. The modulated effect of SM depended on inherent structural elements of PLA2. Moreover, cholesterol (Chol) incorporation into EYPC/egg yolk sphingomyelin (EYSM) vesicles relieved the inhibitory effect of sphingomyelin on PLA2 activity via lipid domain formation by SM and Chol. The effects on the interactive mode of PLA2 with phospholipids induced by the physical state changes of membrane bilayers abolished the inhibition of SM on catalytic activity and membrane-damaging activity of PLA2. Additionally, quercetin incorporation increased PLA2 activity and membrane-damaging activity toward EYPC/SM vesicles via its raft-making effect. Quercetin incorporation reduced PLA2 activity and membrane-damaging activity toward EYPC/SM/Chol vesicles via its raft-breaking effect. Membrane-inserted quercetin affected on membrane structure and membrane-bound mode of PLA2 to modulate PLA2 interfacial activity and membrane-damaging activity. Finally, studies on the effects of phosphatidylserine (PS) content on the sensitivity of lipid vesicles mimicking inner and outer plasma membrane toward PLA2 activity revealed that the membrane-binding mode adopted by PLA2 depended on the lipid composition. The effects of PS content on the extent of lipid domain formation and the conformation of PLA2 adopted at water-lipid interface modulate PLA2 catalytic activity. Collectively, these results indicate that lipid composition modulates PLA2 activity via its effects on membrane structure and membrane-bound mode of PLA2
13

Sphingosylphosphorylcholine Promotes the Differentiation of Resident Sca-1 Positive Cardiac Stem Cells to Cardiomyocytes Through Lipid raft/JNK/STAT3 and β-catenin Signaling Pathways

Li, Wenjing, Liu, Honghong, Liu, Pingping, Yin, Deling, Zhang, Shangli, Zhao, Jing 01 July 2016 (has links)
Resident cardiac Sca-1-positive (+) stem cells may differentiate into cardiomyocytes to improve the function of damaged hearts. However, little is known about the inducers and molecular mechanisms underlying the myogenic conversion of Sca-1+ stem cells. Here we report that sphingosylphosphorylcholine (SPC), a naturally occurring bioactive lipid, induces the myogenic conversion of Sca-1+ stem cells, as evidenced by the increased expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T), transcriptional enhancer (Mef2c) and GATA4 nucleus translocation. First, SPC activated JNK and STAT3, and the JNK inhibitor SP600125 or STAT3 inhibitor stattic impaired the SPC-induced expression of cardiac transcription factors and GATA4 nucleus translocation, which suggests that JNK and STAT3 participated in SPC-promoted cardiac differentiation. Moreover, STAT3 activation was inhibited by SP600125, whereas JNK was inhibited by β-cyclodextrin as a lipid raft breaker, which indicates a lipid raft/JNK/STAT3 pathway involved in SPC-induced myogenic transition. β-Catenin, degraded by activated GSK3β, was inhibited by SPC. Furthermore, GSK3β inhibitors weakened but the β-catenin inhibitor promoted SPC-induced differentiation. We found no crosstalk between the lipid raft/JNK/STAT3 and β-catenin pathway. Our study describes a lipid, SPC, as an endogenic inducer of myogenic conversion in Sca-1+ stem cells with low toxicity and high efficiency for uptake.
14

Direct Inhibition of CD4+ T-cell Activation by Mycobacterium tuberculosis Cell Wall Glycolipids

Mahon, Robert Norman, III January 2010 (has links)
No description available.
15

The Role of Lipid Raft-Translocation of Prohibitin in Regulation of Akt and Raf-Protected Apoptosis of HaCaT Cells upon Ultraviolet B Irradiation

Wu, Qiong January 2013 (has links)
No description available.
16

Regulation of glutamate transport by GTRAP3-18 and by lipid rafts

Butchbach, Matthew E. R. 01 October 2003 (has links)
No description available.
17

The modulating effects of polyunsaturated fatty acids on membrane composition and phospholipase D in a canine mast cell line as a model for atopic dermatitis

Basiouni, Shereen 08 May 2014 (has links) (PDF)
Polyunsaturated fatty acids (PUFA) have been used with some success in the treatment of canine atopic dermatitis (CAD). Correspondent in vitro studies revealed that PUFA play a crucial role in the exocytosis of mast cells. n3 PUFA such as α-linolenic acid (LNA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), as well as the n6 PUFA linoleic acid (LA) have been shown to arrest the secretion of inflammatory mediators. Contrary, the n-6 PUFA arachidonic acid (AA) has been proven to promote the production of mast cell inflammatory mediators. However, we are still lacking a complete picture of the mode of action. The goal of this work was to further characterize the modulatory effects of PUFA supplementation on the plasma membrane lipid composition of mast cells. Furthermore the consequences of a membrane modulation of mast cells by PUFA on the localization and activity on of the membrane bound enzyme phospholipases D (PLD) were investigated. Canine mastocytoma cells (C2) were supplemented with one of the following PUFA: LNA, EPA, DHA, LA or AA. To investigate the influence of PUFA on the lipid composition of membrane microdomains, lipid rafts were separated from non-raft plasma membranes of mast cells for the first time using a detergent-free isolation technique. Results show that PUFA are significantly increased in rafts as well as in non-rafts microdomains (Publication 1). The incorporation of PUFA into the membrane goes along with an increase of the unsaturation status and the fluidity of the membrane. This rise in membrane fluidity may result in a reorganization of membrane signaling molecules and enzymes such as the PLD. To define the impact of a PUFA supplementation on PLD trafficking, C2 were transfected with green fluorescent protein (GFP) fusion plasmids encoding PLD1 or PLD2. Since the transfection ability of the suspension cell line C2 is limited, a special transfection protocol was established, suitable for non-adherent cell lines. Transfection succeeded using chicken egg white as coating material for the cell culture plates. The transfection efficiency rose to 50% versus 5% in uncoated plates. In addition to the obvious increase in the transfection efficiency, the new technique is simple and economic and might be suitable for a wide range of suspension cell lines (Publication 2). Using this optimized protocol the influence of PUFA on the trafficking of PLD isoforms was studied. LNA, EPA, DHA and LA but not AA prevented the stimulation-induced translocation of PLD1 to the plasma membrane. Since the translocation of PLD1 is important for mast cell exocytosis, LNA, EPA, DHA and LA do have an inhibiting effect on the stimulation-induced release of pro-inflammatory mediators. All PUFA tested boosted the total PLD activity. In order to rule out, which PLD isoform was affected by the PUFA, the mast cells were supplemented with DHA or AA in the presence of specific PLD isoform inhibitors. DHA completely abolished the inhibitiory effect of the PLD1 inhibitor but had no effect on the inhibitory effect of PLD2 inhibitor. On the other hand, AA suppressed the inhibitory effect of both PLD1 and PLD2 inhibitor (Publication 3). Taking together, the studies provide a mechanistic base for the role of PUFA in the exocytosis processes of mast cells. PUFA of the n3 and the n6 families impact the lipid composition of membrane microdomains, which in turn lead to a modulation of the physiochemical properties of the membrane. LNA, EPA, DHA and LA suppress the release of inflammatory mediators through their inhibitory action on the stimulation-induced translocation of the PLD1. Contrariwise, AA permits the stimulation-induced migration of PLD1 to the plasma membrane and increases the activity of both PLD isoforms. Therefore, LNA, EPA, DHA and LA but not AA inhibit the release of mast cell inflammatory mediators upon stimulation. / Mehrfach ungesättigte Fettsäuren (PUFA) können mit einigem Erfolg zur Behandlung der caninen atopischen Dermatitis (CAD) eingesetzt werden. In vitro-Studien zeigten, dass PUFA eine entscheidende Rolle in der Exozytose von Mastzellen spielen. N-3-PUFA wie α-Linolensäure (LNA), Eicosapentaensäure (EPA), Docosahexaensäure (DHA) sowie die n-6-PUFA Linolsäure (LA) können die Sekretion von Entzündungsmediatoren vermindern. Arachidonsäure (AA) als n-6 mehrfach ungesättigte Fettsäure hingegen fördert die Entzündungsmediatoren-Freisetzung aus den Mastzellen. Eine vollständige Aufklärung der Wirkungsweise fehlt aber weiterhin. Das Ziel dieser Arbeit war eine weitergehende Charakterisierung der modulierenden Effekte einer PUFA-Supplementierung auf die Lipidzusammensetzung der Plasmamembran von Mastzellen. Darüber hinaus wurden die Auswirkungen von PUFA auf die Lokalisation und Aktivität des Membran-gebundenen Enzyms Phospholipase D (PLD) untersucht. Canine Mastozytom-Zellen (C2) wurden mit einer der folgenden PUFA kultiviert: LNA, EPA, DHA, LA oder AA. Um den Einfluss von PUFA auf die Lipidzusammensetzung der Membran-Mikrodomänen zu untersuchen, konnten sowohl Lipid Raft als auch Nicht-Raft Plasmamembran-Anteile von Mastzellen zum ersten Mal mittels einer Detergenzien-freien Isolationsmethode getrennt werden. Hervorzuheben ist, dass PUFA signifikant vermehrt in Raft- sowie in Nicht-Raft Membranmikrodomänen eingelagert werden (Publikation 1). Die Integration von PUFA in die Membran geht mit einer Steigerung der Doppelbindungsanzahl und der Fluidität der Membran einher. Diese Erhöhung der Membranfluidität kann zu einer Reorganisation von membranären Signalmolekülen und Enzymen wie der PLD führen. Um die Auswirkungen einer PUFA-Supplementierung auf den intrazellulären Transport der PLD in C2 zu bestimmen, wurden die Zellen mit PLD1- oder PLD2-codierenden grün fluoreszierenden Protein-(GFP-)Fusionsplasmiden transfiziert. Da die Transfektionsfähigkeit der Suspensions-Zelllinie C2 begrenzt ist, wurde ein für nicht-adhärente Zelllinien geeignetes Transfektionsprotokoll etabliert. Mit Hühnereiweiß als Beschichtungsmaterial für die Zellkultur-Platten stieg die Transfektionseffizienz auf 50% im Vergleich zu 5% bei unbeschichteten Platten. Neben der deutlichen Erhöhung der Transfektionseffizienz ist die neu etablierte Technik einfach durchzuführen sowie wirtschaftlich und kann für eine Vielzahl von Suspension-Zelllinien geeignet sein (Publikation 2). Unter Verwendung dieses optimierten Protokolls wurde der Einfluss von PUFA auf die Translokation der PLD-Isoformen untersucht. LNA, EPA, DHA und LA, nicht aber AA verhindern die stimulationsinduzierte Translokation der PLD1 an die Plasmamembran. Die Translokation der PLD1 ist wichtig für die Mastzell-Exozytose. LNA, EPA, DHA und LA haben hier eine hemmende Wirkung auf die stimulationsinduzierte Freisetzung von proinflammatorischen Mediatoren. Alle getesteten PUFA verstärken die Gesamt-PLD-Aktivität. Um zu unterscheiden, welche PLD-Isoform durch PUFA beeinflusst ist, wurden die Mastzellen mit DHA oder AA in Gegenwart von PLD-Isoform-Inhibitoren supplementiert. DHA hebt die inhibitorische Wirkung des PLD1-Inhibitors vollständig auf, zeigte aber keinen Einfluss auf die hemmende Wirkung des PLD2-Inhibitors. Andererseits unterdrückt AA die hemmende Wirkung des PLD1- als auch des PLD2-Inhibitors (Publikation 3). Zusammenfassend bietet die Studie eine mechanistische Basis für die Rolle von PUFA bei Exozytose-Prozessen von Mastzellen. PUFA der n-3- und n-6-Familie beeinflussen die Lipidzusammensetzung von membranären Mikrodomänen, was wiederum zu einer Modulation der physikalisch-chemischen Eigenschaften der Membran führt. LNA, EPA, DHA und LA verhindern die Freisetzung von Entzündungsmediatoren durch ihre hemmende Wirkung auf die stimulationsinduzierte Translokation der PLD1. Umgekehrt erlaubt AA eine stimulationsinduzierte Migration der PLD1 zur Plasmamembran und steigert die Aktivität der beiden Isoformen der PLD. Somit hemmen LNA, EPA, DHA und LA, aber nicht AA die Freisetzung von Mastzell-Entzündungsmediatoren nach Stimulation.
18

Lipid Bilayers as Surface Functionalizations for Planar and Nanoparticle Biosensors

Ip, Shell Y. 05 December 2012 (has links)
Many biological processes, pathogens, and pharmaceuticals act upon, cellular membranes. Accordingly, cell membrane mimics are attractive targets for biosensing, with research, pathology, and pharmacology applications. Lipid bilayers represent a versatile sensor functionalization platform providing antifouling properties, and many receptor integration options, uniquely including transmembrane proteins. Bilayer-coated sensors enable the kinetic characterization of membrane/analyte interactions. Addressed theoretically and experimentally is the self-assembly of model membranes on plasmonic sensors. Two categories of plasmonic sensors are studied in two parts. Part I aims to deposit raft-forming bilayers on planar nanoaperture arrays suitable for multiplexing and device integration. By vesicle fusion, planar bilayers are self-assembled on thiol-acid modified flame-annealed gold without the need for specific lipid head-group requirements. Identification of coexisting lipid phases is accomplished by AFM imaging and force spectroscopy mapping. These methods are successfully extended to metallic, plasmon-active nanohole arrays, nanoslit arrays and annular aperture arrays, with coexisting phases observed among the holes. Vis-NIR transmission spectra of the arrays are measured before and after deposition, indicating bilayer detection. Finally, the extraction of membrane proteins from cell cultures and incorporation into model supported bilayers is demonstrated. These natural membrane proteins potentially act as lipid-bound surface receptors. Part II aims to encapsulate in model lipid bilayers, metallic nanoparticles, which are used as probes in surface enhanced Raman spectroscopy. Three strategies of encapsulating particles, and incorporating Raman-active dyes are demonstrated, each using a different dye: malachite green, rhodamine-PE, and Tryptophan. Dye incorporation is verified by SERS and the bilayer is visualized and measured by TEM, with support from DLS and UV-Vis spectroscopy. In both parts, lipid-coated sensors are successfully fabricated and characterized. These results represent important and novel solutions to the functionalization of plasmonic surfaces with biologically relevant cell membrane mimics.
19

The Role of Docosahexaenoic Acid in Regulation of Epidermal Growth Factor Receptor Activation and Function

Turk, Harmony 1985- 14 March 2013 (has links)
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase integral in regulating cell growth, survival, and migration. EGFR signaling, which is dependent on localization of the receptor within lipid rafts, is often hijacked during colon tumorigenesis. Previous work has found that docosahexaenoic acid (DHA) is protective against colon cancer. This fatty acid is proposed to function in part by perturbing lipid rafts and thereby altering cell signaling. The overall objective of this work was to determine whether DHA alters EGFR function and signaling. We assessed EGFR localization and ligand-induced phosphorylation in YAMC cells treated with fatty acids. We found that DHA reduced the localization of EGFR to lipid rafts. Concomitant with altering receptor localization, DHA was found to increase EGFR phosphorylation. However, DHA paradoxically suppressed EGFR signal transduction. We found that DHA uniquely altered EGFR activity, and other long chain polyunsaturated fatty acid did not exert the same effect. We additionally observed similar effects on EGFR activation and signaling by feeding mice a diet enriched in fish oil (high in DHA), and this was attendant with reduced colon tumorigenesis. We next probed the mechanism by which DHA enhances EGFR phosphorylation. We found that DHA facilitates receptor dimerization to increase phosphorylation. We additionally identified Ras activation as the site of perturbation of signal transduction. DHA suppressed signal transduction by both changing the localization of EGFR within the plasma membrane and increasing receptor endocytosis and degradation. Lastly, we extended our observations into a wounding model. Although DHA uniquely altered ligand-stimulated EGFR activity, both DHA and EPA altered EGFR transactivation and signaling upon injury. This culminated in reduced wound healing in DHA and EPA treated cells. In an animal model, we found that diets enriched in either DHA or EPA altered EGFR signaling in the colonocytes of wounded animals. Overall, we found that DHA modifies EGFR signaling, which can be beneficial or detrimental for health depending on the disease state of an individual. These data help elucidate a mechanism by which DHA protects against colon cancer, as well as indicating a potential downside of n-3 PUFA therapy.
20

Caveolae and Caveolin-1 are important for Vitamin D signalling

Wong, Kevin L. 20 October 2010 (has links)
The most active form of Vitamin D, 1alpha,25(OH)2D3, modulates cells via receptor mediated mechanisms. While studies have elucidated the pathway via the classical nuclear Vitamin D Receptor (VDR), little is known about the membrane-associated Vitamin D Receptor (ERp60). Caveolae and its characteristic protein Caveolin-1 have been involved in many signaling pathways due to its specific structure and physical configuration. Other studies have shown that many components of the Vitamin D pathway have been found in caveolae. This study hypothesizes that caveolae and Caveolin-1 are important for the effects of 1,25 Vitamin D signaling via ERp60. Research up to date have shown that in rat and mouse growth zone chondrocytes, cells deprived of intact caveolae either through disruption through beta-Cyclodextrin or genetic knockout do not exhibit the characteristic responses to Vitamin D through ERp60 when compared to chondrocytes with functional caveolae. Studies using immunofluorescence co-localization and caveolae fractionation have shown that ERp60 is localized in the caveolae domains. Cellular fractionation was also performed to examine the localization of the ERp60 receptor in lipid rafts and caveolae. Histology and transmission electron microscopy were also used to examine the physiological importance of caveolae and Caveolin-1 in growth plate morphology and cellular characteristics.

Page generated in 0.0758 seconds