• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple-valued functions in the sense of F. J. Almgren

Goblet, Jordan 19 June 2008 (has links)
A multiple-valued function is a "function" that assumes two or more distinct values in its range for at least one point in its domain. While these "functions" are not functions in the normal sense of being single-valued, the usage is so common that there is no way to dislodge it. This thesis is devoted to a particular class of multiple-valued functions: Q-valued functions. A Q-valued function is essentially a rule assigning Q unordered and not necessarily distinct points of R^n to each element of R^m. This object is one of the key ingredients of Almgren's 1700 pages proof that the singular set of an m-dimensional mass minimizing integral current in R^n has dimension at most m-2. We start by developing a decomposition theory and show for instance when a continuous Q-valued function can or cannot be seen as Q "glued" continuous classical functions. Then, the decomposition theory is used to prove intrinsically a Rademacher type theorem for Lipschitz Q-valued functions. A couple of Lipschitz extension theorems are also obtained for partially defined Lipschitz Q-valued functions. The second part is devoted to a Peano type result for a particular class of nonconvex-valued differential inclusions. To the best of the author's knowledge this is the first theorem, in the nonconvex case, where the existence of a continuously differentiable solution is proved under a mere continuity assumption on the corresponding multifunction. An application to a particular class of nonlinear differential equations is included. The third part is devoted to the calculus of variations in the multiple-valued framework. We define two different notions of Dirichlet nearly minimizing Q-valued functions, generalizing Dirichlet energy minimizers studied by Almgren. Hölder regularity is obtained for these nearly minimizers and we give some examples showing that the branching phenomena can be much worse in this context.
2

Numerical experiments with FEMLAB® to support mathematical research

Hansson, Mattias January 2005 (has links)
<p>Using the finite element software FEMLAB® solutions are computed to Dirichlet problems for the Infinity-Laplace equation ∆∞(<i>u</i>) ≡ <i>u</i><sup>2</sup><sub>x</sub><i>u</i><sub>xx </sub>+ 2<i>u</i><sub>x</sub><i>u</i><sub>y</sub><i>u</i><sub>xy </sub>+<sub> </sub><i>u</i><sup>2</sup><sub>y</sub><i>u</i><sub>yy </sub>= 0. For numerical reasons ∆<i>q</i>(<i>u</i>) = div (|▼<i>u</i>|<i>q</i>▼<i>u</i>)<i> = </i>0, which (formally) approaches as ∆∞(<i>u</i>) = 0 as <i>q</i> → ∞, is used in computation. A parametric nonlinear solver is used, which employs a variant of the damped Newton-Gauss method. The analysis of the experiments is done using the known theory of solutions to Dirichlet problems for ∆∞(<i>u</i>) = 0, which includes AMLEs (Absolutely Minimizing Lipschitz Extensions), sets of uniqueness, critical segments and lines of singularity. From the experiments one main conjecture is formulated: For Dirichlet problems, which have a non-constant boundary function, it is possible to predict the structure of the lines of singularity in solutions in the Infinity-Laplace case by examining the corresponding Laplace case.</p>
3

Numerical experiments with FEMLAB® to support mathematical research

Hansson, Mattias January 2005 (has links)
Using the finite element software FEMLAB® solutions are computed to Dirichlet problems for the Infinity-Laplace equation ∆∞(u) ≡ u2xuxx + 2uxuyuxy + u2yuyy = 0. For numerical reasons ∆q(u) = div (|▼u|q▼u) = 0, which (formally) approaches as ∆∞(u) = 0 as q → ∞, is used in computation. A parametric nonlinear solver is used, which employs a variant of the damped Newton-Gauss method. The analysis of the experiments is done using the known theory of solutions to Dirichlet problems for ∆∞(u) = 0, which includes AMLEs (Absolutely Minimizing Lipschitz Extensions), sets of uniqueness, critical segments and lines of singularity. From the experiments one main conjecture is formulated: For Dirichlet problems, which have a non-constant boundary function, it is possible to predict the structure of the lines of singularity in solutions in the Infinity-Laplace case by examining the corresponding Laplace case.
4

Extensions lipschitziennes minimales / Minimal lipschitz extension

Phan, Thanh Viet 16 December 2015 (has links)
Cette thèse est consacrée aux quelques problèmes mathématiques concernant les extensions minimales de Lipschitz. Elle est organisée de manière suivante. Le chapitre 1 est dédié à l’introduction des extensions minimales de Lipschitz. Dans le chapitre 2, nous étudions la relation entre la constante de Lipschitz d’ 1-field et la constante de Lipschitz du gradient associée à ce 1-field. Nous proposons deux formules explicites Sup-Inf, qui sont des extensions extrêmes minimales de Lipschitz d’1-field. Nous expliquons comment les utiliser pour construire les extensions minimales de Lipschitz pour les applications Rmà Rn . Par ailleurs, nous montrons que les extensions de Wells d’1- fields sont les extensions absolument minimales de Lipschitz (AMLE) lorsque le domaine d’expansion d’1-field est infini. Un contreexemple est présenté afin de montrer que ce résultat n’est pas vrai en général. Dans le chapitre 3, nous étudions la version discrète de l’existence et l’unicité de l’AMLE. Nous montrons que la fonction tight introduite par Sheffield and Smart est l’extension de Kirszbraun. Dans le cas réel, nous pouvons montrer que cette extension est unique. De plus, nous proposons un algorithme qui permet de calculer efficacement la valeur de l’extension de Kirszbraun en complexité polynomiale. Pour conclure, nous décrivons quelques pistes pour la future recherche, qui sont liées au sujet présenté dans ce manuscrit. / The thesis is concerned to some mathematical problems on minimal Lipschitz extensions. Chapter 1: We introduce some basic background about minimal Lipschitz extension (MLE) problems. Chapter 2: We study the relationship between the Lipschitz constant of 1-field and the Lipschitz constant of the gradient associated with this 1-field. We produce two Sup-Inf explicit formulas which are two extremal minimal Lipschitz extensions for 1-fields. We explain how to use the Sup-Inf explicit minimal Lipschitz extensions for 1-fields to construct minimal Lipschitz extension of mappings from Rm to Rn. Moreover, we show that Wells’s extensions of 1-fields are absolutely minimal Lipschitz extensions (AMLE) when the domain of 1-field to expand is finite. We provide a counter-example showing that this result is false in general. Chapter 3: We study the discrete version of the existence and uniqueness of AMLE. We prove that the tight function introduced by Sheffield and Smart is a Kirszbraun extension. In the realvalued case, we prove that the Kirszbraun extension is unique. Moreover, we produce a simple algorithm which calculates efficiently the value of the Kirszbraun extension in polynomial time. Chapter 4: We describe some problems for future research, which are related to the subject represented in the thesis.

Page generated in 0.1002 seconds