• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloy

Ola, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys. Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material. Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.
2

A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloy

Ola, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys. Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material. Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.
3

Fiber laser welding of nickel-based superalloy Inconel 718

Oshobe, Omudhohwo Emaruke 20 August 2012 (has links)
Inconel 718 (IN 718) is widely used in applications, such as aircraft and power turbine components. Recently, fiber laser welding has become an attractive joining technique in industry for fabrication and repair of service-damaged components. However, a major limitation in the laser welding of IN 718 is that liquation cracking occurs. In the present work, autogenous fiber laser welding of IN 718 was used to study the effects of welding parameters and different pre-weld heat treatments on liquation cracking. Contrary to previous studies, a dual effect of heat input on cracking is observed. A rarely reported effect of heat input is attributed to process instability. Liquation cracking increases with pre-weld heat treatment temperatures that increase grain size and/or, possibly, intregranular boron segregation. The study shows that pre-weld heat treatment at 950oC can be used for repair welding of IN 718 without significant loss in cracking resistance.
4

Fiber laser welding of nickel-based superalloy Inconel 718

Oshobe, Omudhohwo Emaruke 20 August 2012 (has links)
Inconel 718 (IN 718) is widely used in applications, such as aircraft and power turbine components. Recently, fiber laser welding has become an attractive joining technique in industry for fabrication and repair of service-damaged components. However, a major limitation in the laser welding of IN 718 is that liquation cracking occurs. In the present work, autogenous fiber laser welding of IN 718 was used to study the effects of welding parameters and different pre-weld heat treatments on liquation cracking. Contrary to previous studies, a dual effect of heat input on cracking is observed. A rarely reported effect of heat input is attributed to process instability. Liquation cracking increases with pre-weld heat treatment temperatures that increase grain size and/or, possibly, intregranular boron segregation. The study shows that pre-weld heat treatment at 950oC can be used for repair welding of IN 718 without significant loss in cracking resistance.
5

Development of a chromium-free consumable for joining stainless steel

Sowards, Jeffrey William 26 June 2009 (has links)
No description available.

Page generated in 0.127 seconds