Spelling suggestions: "subject:"iiquid crystals"" "subject:"iiquid 3crystals""
471 |
Tunable Liquid Crystal Photonic DevicesFan, Yun-Hsing 01 January 2005 (has links)
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices and their fabrication methods. The devices presented include inhomogeneous polymer-dispersed liquid crystal (PDLC), polymer network liquid crystals (PNLC) and phase-separated composite film (PSCOF). Liquid crystal/polymer composites could exist in different forms depending on the fabrication conditions. In Chap. 3, we demonstrate a novel nanoscale PDLC device that has inhomogeneous droplet size distribution. In such a PDLC, the inhomogeneous droplet size distribution is obtained by exposing the LC/monomer with a non-uniform ultraviolet (UV) light. An electrically tunable-efficiency Fresnel lens is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. Different gradient profiles are obtained by using different photomasks. The nanoscale LC droplets are randomly distributed within the polymer matrix, so that the devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated a polymer-network liquid crystal (PNLC) using a rod-like monomer structure. Since the monomer concentration is only about 5%, the operating voltage is below 10 Vrms. The PNLC devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. In Chap. 3, another approach to lower the operating voltage is to use phase-separated composite film (PSCOF) where the LC and polymer are separated completely to form two layers. Without multi-domain formed in the LC cell, PSCOF is free from light scattering. Using PNLC and PSCOF, we also demonstrated LC blazed grating and Fresnel lens. The diffraction efficiency of these devices is continuously controlled by the electric field. Besides Fresnel lens, another critical need for imaging and display is to develop a system with continuously tunable focal length. A conventional zooming system controls the lens distance by mechanical motion along the optical axis. This mechanical zooming system is bulky and power hungry. To overcome the bulkiness, in Chap. 4 we developed an electrically tunable-focus flat LC spherical lens which consists of a spherical electrode imbedded in the top flat substrates while a planar electrode on the bottom substrate. The electric field from the spherical and planar electrodes induces a centrosymmetric gradient refractive index distribution within the LC layer which, in turn, causes the focusing effect. The focal length is tunable by the applied voltage. A tunable range from 0.6 m to infinity is achieved. Microlens array is an attractive device for optical communications and projection displays. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative or vise versa by the applied voltage. The top spherical electrode glass substrate is flattened with a polymer layer. The top convex substrate and LC layer work together like a zoom lens. By tuning the refractive index profile of the LC layer, the focal length of the microlens array can be switched from positive to negative or vise versa. The tunable LC microlens array would be a great replacement of a conventional microlens array which can be moved by mechanical elements. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. A special feature for LC/polymer composites is light scattering. The concept is analogous to the light scattering of clouds which consist of water droplets. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The PNLC can present anisotropic or isotropic light scattering behavior depending on the fabrication methods. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. The applications for display, light shutters, and switchable windows are emphasized. Although polymer networks help to reduce liquid crystal response time, they tend to scatter light. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. As a result, the PNLC response time is ~300X faster than that of a pure LC mixture except that the threshold voltage is increased by ~25X. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
|
472 |
An Experimental Investigation On The Dynamics Of Bubbles Utilizing Refrigerant R134a Under Pressurized Flow Boiling ConditionsVereen, Keon 01 January 2011 (has links)
Flow boiling heat transfer allows for the dissipation of large amounts of heat. In this work, the effect of heat flux and pressure on flow boiling of liquid refrigerant R-134a is studied in a vertical thin channel. The experimental setup mimics a refrigeration cycle and specifically looks at the effect of pressure and wall heat flux on the departure size and bubble generation rate. The experimental setup consists of a closed loop which includes a vertical narrow rectangular channel and two synchronized high speed cameras for optical measurements at either sides of the channel. The setup is built to employ an accurate measurement technique to define wall temperatures of the representative flow boiling process. Instead of using thermocouples on the surface channel, the thermochromic liquid crystallography (TLC) technique is used to determine non-invasively the heater surface temperature at high temporal and spatial resolution. The TLC interval range is 30-50°C. The TLC is attached to a Fecralloy heating section. The high speed Prosilica cameras simultaneously capture, colored TLC images as well as bubble nucleation and departure at very high frame rates. Experiments on subcooled flow boiling heat transfer have been conducted with refrigerant R-134a under a mass flux range of 484.838 kg/m2 s to 1212.1 kg/m2 s. With the low mass flux, the wall heat flux ranged from 167.2 to 672.1 kW/m2 , the inlet subcooling ranged from 0.35°C to 16.55 °C, the system pressure ranged from 621 kPa to 1034 kPa. At high mass flux, the wall heat flux ranged from 329.8 kW/m2 to 744 kW/m2 , the iv inlet subcooling from 0.16°C to 17.21 °C, and the system pressure from 621 kPa to 1034 kPa. A parametric study was done by maintaining various input parameters constant. From the high speed images, bubble parameters such as size and frequency are calculated. Temperature contours are utilized to determine the surface wall temperature at specific points. Sequential wall temperatures are traced over a short period of time to understand the cooling effects. The bubble propagation and coalescence are also visualized. Results show that bubble size and frequency increased with heat flux at any particular pressure. At higher pressure, the trend would be for the bubble size to decrease; however, the inlet subcooling and heat flux also affect bubble size. The bubble frequency is also seen to be affected by the inlet subcooling and the heat flux. Even though the inlet subcooling is maintained approximately constant, any slight decrease in subcooling increased bubble growth rate. Another trend that is observed is that at higher the heat flux, the bubble generation frequency is faster; however no specific trend is observed for wall superheat. With an increase in heat flux, the wall superheats are expected to increase; however, the localized nature of the nucleation activity sites is seen to affect the results. The variables are non-dimensionalized to note trends in parameters. In summary, the data analysis demonstrates that both heat flux and pressure significantly influence the bubble generation rate, size, propagation and coalescence.
|
473 |
Formation Of Lyotropic Liquid Crystals Through The Self-assembly Of Bile Acid Building BlocksTamhane, Karan 01 January 2009 (has links)
Liquid crystalline materials (LCMs) have gained much popularity over the past century. The thermotropic forms of these materials have been extensively studied and employed in a range of innovative applications. The lyotropic liquid crystal systems that have been studied in the past have often been formed by the organization of natural and synthetic small molecules in solutions. In this study, we use self-assembled supramolecular structures as building blocks to fabricate lyotropic liquid crystals. We investigate the self-assembly of a naturally occurring bile acid called lithocholic acid (LCA), to form supramolecular fibrous and tubular structures in basic aqueous solutions. We control the morphology of the self-assembled structures by manipulating experimental parameters in order to gain comprehensive knowledge regarding the self-assembly process. We characterize these structures with respect to their morphology i.e. their length, diameter, flexibility and shape using atomic force microscopy, optical microscopy and infrared spectroscopy. We produce lyotropic liquid crystal phases using self-assembled LCA structures through modification of physical parameters such as concentration, temperature, shear and pH. The nature of the lyotropic liquid crystal phases depends upon the morphology of the fibers and tubes. We observe that the short, rigid fibers and tubes form nematic phases while long, flexible fibers and tubes form cholesteric phases. We also study the phase transitions of the liquid crystal (LC) phases by observing their patterns using a polarizing microscope. Observations show that LC phases form in samples with LCA concentration above 0.75%w/w. Since the process of self-assembly is time-dependent, so is the formation of liquid crystal phases. We note that the optimum LCA concentration for LC phase formation is 2%-4%w/w and that the liquid crystal transition temperature is about 70[degrees]C.
|
474 |
The Physics of Spatially Twisted Nematic Liquid CrystalsSit, Alicia 24 October 2023 (has links)
When nematic liquid crystals are placed between parallel glass plates with differing alignment directions, the bulk will twist in order to match the boundary conditions. This phenomenon of a twisted cell has been used extensively for the development of everyday liquid-crystal displays. However, there has been limited study of the twisted cell beyond the 90-degree twist case. In this thesis, I explore the behaviour of inhomogeneous liquid-crystal devices where the front and back alignment layers are uniquely and spatially patterned. This creates a non-symmetric device which can act on light differently depending on the orientation of the device and an externally applied voltage. The effect on the polarization of light is theoretically modelled using Jones matrices, and elastic continuum theory is employed to fully understand how the twist and tilt distributions of the liquid crystals change with field strength. Different pattern configurations were fabricated, tested, and characterized, revealing the complex behaviour that occurs with an applied electric field. Liquid-crystal devices provide a bespoke way of tailoring the spatial distribution of light and photons. A set of quantum key distribution experiments through underwater channels, leveraging these devices to encode information on structured photons, is also presented.
|
475 |
Modelling Liquid Crystal Elastomer Coatings: Forward and Inverse Design Studies via Finite Element and Machine Learning MethodsGolestani, Youssef M. 28 November 2022 (has links)
No description available.
|
476 |
Boundary Versus Interior Defects for a Ginzburg-Landau Model with Tangential Anchoring Conditionsvan Brussel, Lee January 2022 (has links)
In this thesis, we study six Ginzburg-Landau minimization problems in the context of two-dimensional nematic liquid crystals with the intention of finding conditions for the existence of boundary vortices. The first minimization problem consists of the standard Ginzburg-Landau energy on bounded, simply connected domains Ω ⊂ R2 with boundary energy penalizing minimizers who stray from being parallel to some smooth S1-valued boundary function g of degree D ≥ 1. The second and third minimization problems consider the same Ginzburg-Landau energy but now with divergence and curl penalization in the interior and boundary function taken to be g = τ, the positively oriented unit tangent vector to the boundary. The remaining three problems involve minimizing the same energies, but now over the set for which all functions are precisely parallel to the given boundary data (up to a set for which their norms can be zero). These six problems are classified under two categories called the weak and strong orthogonal problems. In each of the six problems, we show that conditions exist for which sequences of minimizers converge to a limiting S1-valued vector field describing an equilibrium configuration for nematic material with defects. In some cases, energy estimates are obtained that show vortices belong to the boundary exclusively and the exact number of these vortices are known. A special case is also studied in the strong orthogonality setting. The analysis here suggests that geometries exist for which boundary vortices may be energetically preferable to interior vortices in the case where interior and boundary vortices have similar energy contributions. / Thesis / Doctor of Philosophy (PhD)
|
477 |
Metallo-Responsive Liquid Crystalline Monomers, Polymers and NetworksMcKenzie, Blayne M. 24 March 2011 (has links)
No description available.
|
478 |
The Behavior of Liquid Crystal Alignment Layers on WaterSmith, Timothy J. 26 June 2012 (has links)
No description available.
|
479 |
Synthesis and Characterization of Photochemically Tunable Chiral Materials for Optically Addressed Cholesteric DisplaysGreen, Lisa M. 30 September 2008 (has links)
No description available.
|
480 |
Electroconvection and Pattern Formation in Nematic Liquid CrystalsAcharya, Gyanu R. 15 April 2009 (has links)
No description available.
|
Page generated in 0.0612 seconds