• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 99
  • 48
  • 38
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • Tagged with
  • 708
  • 708
  • 111
  • 89
  • 89
  • 88
  • 69
  • 66
  • 64
  • 63
  • 56
  • 56
  • 55
  • 53
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Modeling Photo-Actuated Nematic Elastomers and Active Soft Matter

Varga, Michael 18 November 2021 (has links)
No description available.
462

Epoxy + Liquid Crystalline Epoxy Coreacted Networks

Punchaipetch, Prakaipetch 12 1900 (has links)
Molecular reinforcement through in-situ polymerization of liquid crystalline epoxies (LCEs) and a non-liquid crystalline epoxy has been investigated. Three LCEs: diglycidyl ether of 4,4'-dihydroxybiphenol (DGE-DHBP) and digylcidyl ether of 4-hydroxyphenyl-4"-hydroxybiphenyl-4'-carboxylate (DGE-HHC), were synthesized and blended with diglycidyl ether of bisphenol F (DGEBP-F) and subsequently cured with anhydride and amine curing agents. Curing kinetics were determined using differential scanning calorimetry (DSC). Parameters for autocatalytic curing kinetics of both pure monomers and blended systems were determined. The extent of cure for both monomers was monitored by using Fourier transform infrared spectroscopy (FT-IR). The glass transitions were evaluated as a function of composition using DSC and dynamic mechanical analysis (DMA). The results show that the LC constituent affects the curing kinetics of the epoxy resin and that the systems are highly miscible. The effects of molecular reinforcement of DGEBP-F by DGE-DHBP and DGE-HHC were investigated. The concentration of the liquid crystalline moiety affects mechanical properties. Tensile, impact and fracture toughness tests results are evaluated. Scanning electron microscopy of the fracture surfaces shows changes in failure mechanisms compared to the pure components. Results indicate that mechanical properties of the blended samples are improved already at low concentration by weight of the LCE added into epoxy resin. The improvement in mechanical properties was found to occur irrespective of the absence of liquid crystallinity in the blended networks. The mechanism of crack study indicates that crack deflection and crack bridging are the mechanisms in case of LC epoxy. In case of LC modified epoxy, the crack deflection is the main mechanism. Moreover, the effect of coreacting an epoxy with a reactive monomer liquid crystalline epoxy as a matrix for glass fiber composites was investigated. Mechanical properties of the modified matrix were determined by tensile, flexural and impact testing. The improvement in toughness of the bulk matrix by the addition of a LCEs is seen also in the composites. The improvement is related to the enhancement of adhesion between the glass fibers and the matrix.
463

Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Gopalanarayanan, Bhaskar 05 1900 (has links)
Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tg relaxations, which can aid in improving strength characteristics through energy absorption. The a relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (ACP) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tg or the melting point (Tm). The cold crystallization temperature (Tc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the ACP, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement of properties. The amorphous TPI + PLC blends also show the negative deviation of ACP from linearity with composition. The addition of PLC causes a decrease in the thermal conductivity in the transverse direction to the PLC orientation. The thermomechanical analysis indicates isotropic expansivity for the amorphous TPI and a small anisotropy for the semicrystalline TPI. The PLC shows large anisotropy in expansivity. Even 5 wt. % concentration of PLC in the blend induces considerable anisotropy in the expansivity. Thus, blends show controllable expansivity through PLC concentration. Amorphous TPI + PLC blends also show excellent film formability. The amorphous TPI blends show good potential for applications requiring high thermal stability, controlled expansivity and good film formability.
464

Polární kapalné krystaly: struktury, fázové přechody a vlastnosti / Polar liquid crystals: structures, phase transitions and properties

Podoliak, Natalia January 2015 (has links)
In the thesis the structure-property relations of newly synthesised liquid crystalline compounds have been investigated with respect to the length of the non-chiral chain, number of lactate units or the lateral substitutions in the molecular core. Such promising for applications phenomena as orthoconic properties and de Vries behaviour have been found and studied for certain compounds. Besides, the antiferroelectric, TGB, hexatic phases have been observed for some compounds of the studied series. Such unique phenomenon as re-entrancy has been observed for a few compounds of the series under investigation and binary mixtures of one compound with neighbouring homologues have been prepared and studied.
465

Viologen-nucleobase derivatives: building blocks for functional materials

Ciobanu, Marius 04 May 2015 (has links)
The main subject of this thesis is the synthesis and investigation of the properties and potential applications of a new class of hybrid compounds consisting of a rigid, electroactive 4,4’-bipyridinium core capped by nucleobase terminal groups with hydrogen bonding abilities. A new series of small molecules consisting in a 4,4’-bipyridinium unit carrying thymine or/and adenine as capping groups was synthetized. The synthesis strategy implied the regioselective alkylation of thymine and adenine bases respectively, followed by coupling of the alkylated precursors to 4,4’-bipyridine unit via Menschutkin reaction. Electrochemical, spectroelectrochemical and optical investigations revealed an intramolecular charge transfer (CT) relationship between nucleobases as donors and 4,4’-bipyridinium unit as acceptor which is accompanied by a change in color and a shift of the reduction potentials (approx. 60 mV). The viologen-nucleobase derivatives, particularly viologens capped by thymine, were used as building blocks to create self-assembled functional nanostructures in the presence of complementary templates such as oligonucleotides or ssPNA analogues via thymine-adenine interactions. The viologen-thymine derivatives were found to partially precipitate oligonucleotides or plasmid DNA by mean of coulombic interactions and form stable polyplexes that could be used as potential gene delivery vectors. It was found that the number of positive charges, as well as the number of thymine units per viologen-thymine derivative determines whether the interaction with DNA is dominated by electrostatic or by hydrogen bonding interactions. New electroactive ionic liquid crystals were prepared by ion pairing of viologen-nucleobase dicationic species with amphiphilic 3,4,5-tris(dodecyloxy)benzene sulfonate anion. The nucleobases with ability to self-associate by hydrogen bonding were found to influence not just the thermotropic behavior, by decreasing transition temperature from crystalline to mesophase state, but also the supramolecular arrangement in solution. A versatile approach to functionalize mesoporous TiO2 film with viologen-nucleobase derivatives was developed consisting of hydrogen bonding layer-by-layer deposition of viologen-nucleobase derivatives on TiO2 surface using the thymine-adenine molecular recognition as driving force for immobilization. This method is promising and represents an easy way to construct optoelectronic device components as was demonstrated with the construction of a switchable electrochromic device.
466

Nanobâtonnets de NaYF4 à upconversion : synthèse, dispersion colloïdale et propriétés électro-optiques / NaYF4 nanorods with upconversion luminescence : synthesis, colloidal dispersion and electro-optical properties

Thiriet, Maud 27 October 2016 (has links)
Les nanoparticules de fluorures dopées avec des ions lanthanides ont connu un développement croissant ces dernières années. Elles présentent en effet des propriétés optiques d’upconversion remarquables et très intéressantes pour de multiples applications allant du photovoltaïque à l’imagerie médicale. Dans cette thèse, on a élaboré des nanobâtonnets de NaYF4 dopés Yb/Er/Gd, aux propriétés d’émission optimisées. Leur alignement par un champ électrique a ensuite été étudié, nous permettant de tirer parti de leur anisotropie et des propriétés physiques en découlant : biréfringence et luminescence polarisée.Les nanocristaux sont synthétisés par voie solvothermale, à haute température (200 °C) et sous haute pression (20 bars). Leur morphologie et leur structure cristalline sont contrôlées par un choix approprié des paramètres de synthèse comme le dopage en gadolinium ou les conditions de chauffage. A l’issue de la synthèse, l’état d’agrégation des particules de NaYF4 produites limite leur dispersion dans les solvants organiques usuels. Une fonctionnalisation bien spécifique avec des ligands possédant des groupements carboxylate ou phosphonate se révèle alors indispensable. Le greffage des particules avec un ion citrate ou une molécule d’alendronate permet d’obtenir des suspensions colloïdales très stables dans le DMSO. Par ailleurs, la réactivité de l’amine porté par l'alendronate nous a permis de greffer une deuxième molécule active : une rhodamine B, un colorant test, ainsi qu’un cristal liquide cyanobiphényl à tête carboxylique. Grâce à cette fonctionnalisation, de nouveaux matériaux hybrides organo-minéraux ont été développés. La réponse électro-optique des suspensions colloïdales soumises à un champ électrique haute fréquence suit une loi de type effet Kerr, avec une relation quadratique entre la biréfringence induite et l’amplitude du champ appliqué. Les constantes de Kerr sont de l’ordre de 10 8 m/V2 en cohérence avec ce qui a été observé sur d’autres systèmes. La biréfringence observée est majoritairement induite par la structure cristalline anisotrope des particules. Le mécanisme de réorientation de nos particules sous champ est largement dominé par la polarisation de leur nuage électronique. Une luminescence polarisée est finalement décrite, ouvrant la voie à l’usage des nanobâtonnets de NaYF4 comme sondes d’orientation dans des systèmes biologiques ou au sein de fluides en écoulement. / Fluorides nanoparticles doped with lanthanides have seen an increase in interest the last years. They offer outstanding optical properties with a very attractive upconversion for multiple applications from photovoltaics to medical imaging. In this work, we use NaYF4 nanorods doped with Yb/Er/Gd and optimized emission properties. Their alignment by an electric field allows us to access their anisotropic physical properties like polarized luminescence and birefringence.Nanocrystals are synthesized by a hydrothermal route, at high temperature (200 °C) and high pressure (20 bar). Morphology and crystalline structure can be controlled by varying gadolinium doping and heating conditions. At the end of the synthesis, the aggregation of the particles limits their dispersion in all common organic solvents. A particular functionalization with ligands having carboxylate or phosphonate functions is shown to be necessary. The grafting of particles with ions like citrate or alendronate allows to obtain very stable colloidal suspensions in DMSO. Furthermore, the reactivity of the amine function carried by alendronate enables us to graft a second active dye like rhodamine B or a cyanobiphenyl liquid crystal with a carboxylic group. New organo-mineral materials can be produced with this functionalization. The electro-optical response of colloidal suspensions submitted to a high-frequency electric field follows the Kerr law, with a quadratic relation between induced birefringence and the amplitude of the applied field. The system exhibits Kerr constants of the order of 108 m/V2, in agreement with the literature. The birefringence is induced by the anisotropic crystalline structure of the colloid, not by its shape. The mechanism of reorientation of colloids under an electric field is widely dominated by the polarization of their ionic cloud. A polarized luminescence is finally described, which will allow the use of NaYF4 nanorods as orientation probes in biological systems or fluid flows.
467

Synthesis and Functionalities of Conjugated Polymers with Controllable Chirality and Low Bandgaps / 制御可能なキラリティーやローバンドギャップを有する共役系ポリマーの合成とその機能

Ahn, Sangbum 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19011号 / 工博第4053号 / 新制||工||1624(附属図書館) / 31962 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 赤木 和夫, 教授 秋吉 一成, 教授 金谷 利治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
468

New Computational and Experimental Approaches for Studying Ion Acceleration and the Intense Laser-Plasma Interaction

Cochran, Ginevra E. January 2018 (has links)
No description available.
469

Synthesis and Characterization of C60-Porphyrin Derivatives for Enhanced Photovoltaic Performance through Efficient Charge Generation and Transport

Wang, Chien-Lung 22 April 2011 (has links)
No description available.
470

[pt] EFEITOS DE DIFERENTES ÁCIDOS SOBRE AS ESTRUTURAS COLOIDAIS FORMADAS PELO SURFACTANTE PSEUDO-CATIÔNICO ESTEARAMIDOPROPIL DIMETILAMINA / [en] EFFECTS OF DIFFERENT ACIDS ON COLLOIDAL STRUCTURES FORMED BY THE PSEUDO-CATIONIC SURFACTANT STEARAMIDOPROPYL DIMETHYLAMINE

GABRIELA OLIVA FONSECA 22 February 2021 (has links)
[pt] A estearamidopropil dimetilamina (SAPDMA) é um surfactante presente em diversos cosméticos do mercado, principalmente em condicionadores e máscaras capilares. Devido ao seu caráter pseudo-catiônico, essa amidoamina alquílica neutraliza as cargas negativas presentes no cabelo, diminuindo o frizz e deixando-os macios e fáceis de pentear. Além disso, essa molécula é uma ótima substituta aos catiônicos tradicionais, por apresentar menor toxicidade aquática e maior biodegradabilidade. Porém, a SAPDMA é uma molécula não-iônica e insolúvel em água pura, tornando-se positivamente carregada apenas quando em menores valores de pH. Atualmente, sabe-se que diferentes ácidos podem originar formulações com diferentes propriedades físico-químicas, porém este fenômeno ainda não é totalmente compreendido. Este trabalho visa avaliar sistemas com 8 ácidos diferentes, e compreender como essa escolha tem impacto nas estruturas coloidais formadas pelo surfactante. Além disso, também tem como objetivo entender como a presença de álcool graxo influencia na formação da fase líquido-cristalina lamelar, alterando as propriedades finais desses diferentes sistemas. As técnicas de caracterização adotadas neste estudo foram a microscopia óptica convencional e de polarização, o espalhamento de luz dinâmico (DLS), o espalhamento de raios X a baixos ângulos (SAXS) e a reologia. Os resultados mostram o impacto da escolha dos ácidos nas estruturas coloidais, implicando diferenças que não dependem exclusivamente da variação de pH, mas também das diferentes interações entre a SAPDMA e os ânions envolvidos. A tendência do sistema é formar a fase líquido-cristalina lamelar, mas dependendo do ácido utilizado, as lamelas podem apresentar diferentes morfologias, com alterações em sua curvatura. Dessa forma, a escolha do ácido pode impactar na formação, ou não, de vesículas, além de ter enorme papel na estabilidade dos sistemas e nas propriedades sensoriais dos produtos, as quais são fundamentais para atender as necessidades dos consumidores. Sabe-se que, por um lado, as bicamadas fornecem maior viscosidade para o sistema do que as vesículas, sendo essa uma propriedade de enorme importância para aplicação em cosméticos. Porém, por outro lado, as bicamadas mais maleáveis, as quais podem se fechar mais facilmente formando as vesículas, são uma melhor opção em sistemas de emulsões, já que conseguem estabilizar melhor as gotas de óleo dispersas. Este estudo mostra a importância de se compreender melhor esses sistemas e o impacto do ácido utilizado, para que melhores formulações possam ser elaboradas pelas indústrias de cosméticos, que já fazem uso desse surfactante em diversos produtos consumidos pela sociedade. Segundo o nosso colaborador direto, Dr. Heitor de Oliveira (Coty Inc., Darmstadt/Alemanha), este estudo foi fundamental para que o grupo de P(e)D o qual ele gerencia pudesse otimizar e gerar redução de custos em um grupo de fórmulas de condicionadores capilares, considerados como best seller entre as marcas Clairol NNE e Wella Koleston, ambas pertencentes ao grupo Coty Inc.. As respectivas fórmulas já se encontram em fase de teste final para produção. / [en] Stearamidopropyl dimethylamine (SAPDMA) is a surfactant and it has been widely used in the cosmetics industries, particularly in hair conditioners and masks. Because of its pseudo-cationic nature, this alkyl amidoamine neutralizes the negative charges of hair strands, decreasing frizz, providing greater softness and combing force reduction. Besides that, alkyl amidoamines are excellent substitutes for traditional cationic surfactants, because they present less toxicity and improved biodegradability. However, SAPDMA is insoluble in water, as it behaves as a non-ionic molecule. At low pH values, SAPDMA becomes positively charged and, consequently, soluble in water. Currently, it is known that different acids can induce different colloid structures in formulations containing SAPDMA, which have particular physico-chemical properties. From the best of our knowledge, this phenomenon it not completely understood yet. This study intends to understand how 8 different acids can impact on colloidal structures formed by SAPDMA. In addition, we also aim to understand how fatty alcohols change the final properties of these different systems. The techniques employed to characterize all systems were conventional and polarized optical microscopy, dynamic light scattering (DLS), small angle X ray scattering (SAXS) and rheology. The results revealed that the chosen acids impact differently on the colloidal structures and that the observed differences are not limited only to pH variations, but also to different interactions between SAPDMA and the anions involved, the respective conjugated bases. The systems tendency is to form lamellar liquid-crystalline phase, but depending on the chosen acid, bilayers may have different morphologies, with changes in its curvature. So, the acid choice can impact on the formation, or not, of vesicles, besides it has a huge role in systems stability as well as the sensorial properties of the products, which are key to address the consumer needs that we aim to comply with. On one hand, bilayers can provide increased viscosity that is a property of enormous importance for application in cosmetics. On the other hand, malleable bilayers can easily close and form vesicles, which are better choice for emulsion systems, since they can easier stabilize dispersed oil droplets. This study shows the importance of better understanding systems containing SAPDMA and the impact that different acids have on them. Hence, better formulations could be developed by cosmetic industries, which already use this pseudo-cationic surfactant in several products consumed by society. Accordingly to our direct collaborator Dr. Heitor de Oliveira (Coty Inc., Darmstadt/Germany), this study was essential for the R(and)D group which he manages in order to optimize and generate cost reduction in a group of conditioner formulas considered as best seller within the brands Clairol NNE as well as Wella Koleston, both from Coty Inc.. The respective formulas are already in the final teste phase for production.

Page generated in 0.0624 seconds