Spelling suggestions: "subject:"iiquid propelled"" "subject:"1iquid propelled""
11 |
Investigation of liquid fuel jet injection into a simulated subsonic "dump" combustorOgg, John Chappell January 1979 (has links)
Basic experimental studies of the injection of liquid fuel into a two dimensional flowfield designed to represent a sudden-expansion "dump" combustor were performed under cold-flow conditions. Test conditions were as follows: 0.6 entrance Mach number, 25 PSIA total pressure, and nominally 75°F stagnation temperature. Two step heights were investigated, 1.0 in. and 0.5 in., corresponding to area ratios of 1.33 and 1.17. The investigation included Pitot and static pressure distributions, spark and streak shadowgraphs, surface flow visualization, direct photographs and videotape recordings. The backlighted streak and spark shadowgraphs were used to obtain jet penetration and break-up information. Oil drop surface flow studies showed details of the flow in the recirculation region behind the step. The injectant for these cold flow studies was selected as water, which was injected transversely to the air flow 1.0 in. and 0.5 in. upstream of the step at various flow rates. It was found that both the location of the injection port relative to the step and the step height had no measurable effect on jet penetration and break-up. Injectant accumulation on the combustor wall in the base-flow region was found to be substantial under some conditions, and the amount of accumulation was shown to be a strong function of initial liquid jet penetration height. / M.S.
|
12 |
Large-eddy simulations of high-pressure shear coaxial flows relevant for H2/O2 rocket enginesMasquelet, Matthieu Marc 11 January 2013 (has links)
The understanding and prediction of transient phenomena inside Liquid Rocket Engines
(LREs) have been very difficult because of the many challenges posed by the
conditions inside the combustion chamber. This is especially true for injectors involving
liquid oxygen LOX and gaseous hydrogen GH₂. A wide range of length scales
needs to be captured from high-pressure flame thicknesses of a few microns to the length
of the chamber of the order of a meter. A wide range of time scales needs to be captured,
again from the very small timescales involved in hydrogen chemistry to low-frequency
longitudinal acoustics in the chamber. A wide range of densities needs to be captured,
from the cryogenic liquid oxygen to the very hot and light combustion products. A wide
range of flow speeds needs to be captured, from the incompressible liquid oxygen jet to
the supersonic nozzle. Whether one desires to study these issues numerically or
experimentally, they combine to make simulations and measurements very difficult whereas
reliable and accurate data are required to understand the complex physics at stake. This
thesis focuses on the numerical simulations of flows relevant to LRE applications
using Large Eddy Simulations (LES). It identifies the required features to tackle
such complex flows, implements and develops state-of-the-art solutions
and apply them to a variety of increasingly difficult problems.
More precisely, a multi-species real gas framework is developed inside a conservative,
compressible solver that uses a state-of-the-art hybrid scheme to capture at the same time
the large density gradients and the turbulent structures that can be found in a
high-pressure liquid rocket engine.
Particular care is applied to the
implementation of the real gas framework with detailed derivations of thermodynamic
properties, a modular implementation of select equations of state in the solver.
and a new efficient iterative method.
Several verification cases are performed to evaluate this implementation and the
conservative properties of the solver. It is then validated against laboratory-scaled
flows relevant to rocket engines, from a gas-gas reacting injector to a liquid-gas
injector under non-reacting and reacting conditions. All the injectors considered contain
a single shear coaxial element and the reacting cases only deal with H₂-O₂ systems.
A gaseous oyxgen-gaseous hydrogen (GOX-GH₂) shear coaxial injector, typical
of a staged combustion engine, is first investigated. Available experimental data is
limited to the wall heat flux but extensive comparisons are conducted between
three-dimensional and axisymmetric solutions generated by this solver as well as by other
state-of-the-art solvers through a NASA validation campaign. It is found that the unsteady
and three-dimensional character of LES is critical in capturing physical flow features,
even on a relatively coarse grid and using a 7-step mechanism instead of a 21-step
mechanism. The predictions of the wall heat flux, the only available data, are not very good and
highlight the importance of grid resolution and near-wall models for LES.
To perform more quantitative comparisons, a new experimental setup is investigated under
both non-reacting and reacting conditions. The main difference with the previous setup,
and in fact with most of the other laboratory rigs from the literature, is the presence of
a strong co-flow to mimic the surrounding flow of other injecting elements. For the
non-reacting case, agreement with the experimental high-speed visualization is very good,
both qualitatively and quantitatively but for the reacting case, only poor agreement is
obtained, with the numerical flame significantly shorter than the observed one. In both
cases, the role of the co-flow and inlet conditions are investigated and highlighted.
A validated LES solver should be able to go beyond some experimental
constraints and help define the
next direction of investigation. For the non-reacting case, a new scaling law is suggested after a
review of the existing literature and a new numerical experiment agrees with the
prediction of this scaling law.
A slightly modified version of this non-reacting setup is
also used to investigate and validate the Linear-Eddy Model (LEM), an advanced sub-grid closure
model, in real gas flows for the first time.
Finally, the structure of the trans-critical
flame observed in the reacting case hints at the need for such more advanced
turbulent combustion model for this class of flow.
|
13 |
Analysis Of Regenerative Cooling In Liquid Propellant Rocket EnginesBoysan, Mustafa Emre 01 December 2008 (has links) (PDF)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas side wall temperature can be reduced significantly without an increase in the coolant pressure drop.
In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/Kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio cooling channels and different number of cooling channels on gas-side wall and coolant temperature and pressure drop in cooling channel.
|
14 |
A Morphological Technique For Direct Drop Size Measurement Of Cryogenic SpraysGanu, Hrishikesh Vidyadhar 10 1900 (has links) (PDF)
No description available.
|
15 |
Development Of An Iterative Method For Liquid-propellant Combustion Chamber Instability AnalysisCengiz, Kenan 01 January 2011 (has links) (PDF)
Controlling unsteady combustion induced gas flow fluctuations and the resultant motor vibrations is a very significant step in rocket motor design. It occurs when the unsteady heat release due to combustion happens to feed the acoustic oscillations of the closed duct forming a feed-back system. The resultant vibrations concerned may even lead to total failure of the rocket system unless analysed and tested thoroughly. This thesis aims developing a linear numerical analysis method for the growth rate of instabilities and possible mode shape of a liquid-propelled chamber geometry. In particular, A 3-D Helmholtz code, utilizing Culicks spatial averaging linear iterative method, is developed to find the form of deformed mode shapes iteratively to obtain possible effects of heat source and impedance boundary conditions. The natural mode shape phase is solved through finite volume discretization and the open-source eigenvalue extractor, ARPACK, and its parallel implementation PARPACK. The iterative method is particularly used for analyzing the geometries with complex shapes and essentially for disturbances of small magnitudes to natural mode shapes. The developed tools are tested via two simple cases, a duct with inactive flame and a Rijke tube, used as validation cases for the code particularly with only boundary contribution and heat contribution respectively. A sample 2-D and 3-D liquid-propelled combustion chamber is also analysed with heat sources. After comparing with the expected values, it is eventually proved that the method should be only used for determining the modes instability analysis, as to whether it keeps vibrating or decays. The methodology described can be used as a preliminary design tool for the design of liquid-propellant rocket engine combustors, rapidly revealing only the onset of instabilities.
|
16 |
Studies On Impinging-Jet AtomizersGadgil, Hrishikesh Prabhakar 01 1900 (has links)
Characteristics of impinging-jet atomizers in the context of application in liquid propulsion systems are studied in this thesis. A review of past studies on impinging jets revealed the necessity of a correlation in terms of injector parameters for predicting Sauter Mean Diameter (SMD) of a spray. So, an experimental study of atomization in doublet and triplet impinging jet injectors is conducted using water as the stimulant? The major injector parameters considered are orifice diameter, impingement angle and jet velocity. Relative influences of these parameters are explained in terms of a single parameter, specific normal momentum. SMD of the spray reduces as specific normal momentum is increased. A universal expression between non-dimensional SMD and specific normal momentum is obtained, which satisfactorily predicts SMD in doublets as well as triplets.
Noting that practical impinging injectors are likely to have skewness (partial impingement), the study is extended to understand the behavior of such jets. In perfectly impinging doublet, a high aspect ratio ellipse-like mass distribution pattern is obtained with major axis normal to the plane of two jets whereas in skewed jets the major axis turns from its normal position. A simple correlation is obtained, which shows that this angle of turn is a function of skewness fraction and impingement angle only and is independent of injection velocity. Experimental data from both mass distribution and photographic technique validate this prediction. SMD is found to decrease as skewness is increased. This may be the combined effect of shearing of liquid sheet at the point of impingement and more sheet elongation. Hence, skewness turns out to be an important parameter in controlling drop size.
|
17 |
Role Of Hydrogen Injection Temperature On The Combustion Instability Of Cryogenic Rocket EngineBiju Kumar, K S January 2012 (has links) (PDF)
Physical mechanism for high frequency instability in cryogenic engines at low hydrogen injection temperature has been a subject of debate for long time. Experimental and early developmental studies revealed no instabilities and it was only much later when liquid hydrogen at lower initial temperature (~50 to 100 K) was injected into the combustion chamber that instabilities were detected. From the compilations of the experimental data related to the instability of cryogenic engines by Hulka and Hutt, it was found that the instability was strongly connected to the temperature of hydrogen. Experiments conducted with hydrogen temperature ramping from a higher value to lower values indicated that the temperatures in excess of 90 K favor stability under most practical operating conditions. Even though this has been known for over forty years, there has been no clear and simple explanation for this. Many physical mechanisms have been hypothesized to explain how temperature ramping causes instability, but all appear to have limited range of applicability. Current understanding of cryogenic engine combustion instability has been achieved through a combination of experimental investigation and approximate analytical models as well as CFD tools.
Various researchers have tried to link the low hydrogen injection temperature combustion instability phenomena with various potential mechanisms for combustion instability. They involve coupling of combustion acoustics with atomization, vaporization, mixing, chemical kinetics or any combination of these processes. Various studies related to the effect of recess, injector hydrodynamics, acoustic damping of gas liquid scheme injectors and effect of drop size distribution on the stability characteristics of cryogenic engines were compiled in the thesis. Several researchers examined fuel droplet vaporization as the rate controlling mechanism. Recently a new method for the evaluation of stability characteristics of the engine using model chamber were proposed by Russians and this is based on mixing as the rate controlling mechanism. Pros and cons of this method were discussed. Some people examined the combustion instability of rocket engines based on chemistry dynamics. A considerable amount of analytical and numerical studies were carried out by various researchers for finding out the cause of combustion instability. Because of the limitations of their analysis, they could not successfully explain the cause of combustion instability at low hydrogen injection temperature. A compilation of previous numerical studies were carried out. A number of researchers have applied CFD in the study of combustion instabilities in liquid propellant rocket engines. In the present thesis, a theoretical model has been developed based on the vaporization of droplets to predict the stability characteristics of the engine. The proposed concept focuses on three dimensional simulation of combustion instability for giving some meaningful explanations for the experimental work presented in the literature.
In the present study the pressure wave corresponding to the transverse modes were superimposed on a three dimensional steady state operating conditions. Steady state parameters were obtained from the three dimensional combustion modeling. The conservation equations for mass, momentum and energy are non dimensionalized for facilitating the order of magnitude analysis. In order to do the stability analysis, variables are represented as the sum of their steady values and deviation from the steady state. A harmonic time dependence is assumed for the perturbations. For the transverse mode of oscillations independent variables of the zeroth order equations are r and θ only and the dependant variables are not functions of the axial distance. The axial dependence comes only through the first order equations. In this analysis, the wave motion in the combustion chamber is assumed to be linear, confining the nonlinearity to the vaporization process only. The reason behind making this assumption is that the vaporization process is the major mechanism driving the instability. Vaporization histories of liquid oxygen drops in a combustor with superimposed transverse oscillations were computed and stability characteristics of the engine were estimated. The stability characteristics of the engine are accessed from the solutions of first order equations. Effects of various parameters like droplet diameter, hydrogen injection temperature and hydrogen injection area on the stability characteristics of cryogenic engines are studied. A comparison of predicted and published experimental results was made which showed general agreement between experiment and computation.
The present study and experimental results show clearly that hydrogen injection velocity is the critical parameter for instability rather than hydrogen injection temperature. What has happened in actual experiments when hydrogen injection temperature is varied is an effective alteration of the injection velocity that leads to the situation of instability. For higher relative velocity between hydrogen and liquid oxygen, the response of the vaporization rate in the presence of pressure wave is minimum compared to lower relative velocity. Due to this cryogenic engines will go to unstable mode at lower relative velocity.
|
18 |
A Study of the Characteristics of Gas-On-Liquid Impinging InjectorsRakesh, P January 2014 (has links) (PDF)
The work presented here pertains to investigations on gas-on-liquid type of impinging injectors with a generic approach with prospective applications in several areas, and at places with particular emphasis on cryogenic or semi-cryogenic liquid propellant rockets. In such
rockets, one of the components arrives at the injector in a gaseous phase after passing through the regenerative coolant passages or a preceding combustion stage. Most often, the injectors in such systems are of shear coaxial type. The shear coaxial injectors suffer from several disadvantages like complexity in design, manufacture and quality control. Adoption of impinging jet configuration can alleviate these problems in addition to providing further benefits in terms of cost, robustness in high temperature environment and manifolding.
However, there is very little literature on gas-on-liquid injectors either in this context or in any other Even for the simplest form of impinging injectors such as like-on-like doublets, literature provides no conclusive direction at describing a spray from the theoretical models of physical mechanisms. Empirical approach is still the prime mode of obtaining a proper understanding of the phenomena. Steady state spray characterization includes mainly of describing the spatial distribution of liquid mass and drop size distribution as a function of geometric and injection parameters. The parameters that are likely to have an impact on spray characteristics are orifice diameter, ratio of orifice length to diameter, pre-impingement length of individual jets, inter orifice distance, impingement angle, jet velocity and condition of the jet just before impingement. The gas-on- liquid configuration is likely to experience
some qualitative changes because of the expansion of the gas jet. The degree to
which each one of the above variables influences the drop size and mass distribution having implication to combustion performance forms the core theme of the thesis. A dedicated experimental facility has been built, calibrated and deployed exhaustively.
While spray drop size measurement is done largely by a laser diffraction instrument, some of the cases warranted an image processing technique. Two different image processing algorithms are developed in-house for this purpose. The granulometric image processing method developed earlier in the group for cryogenic sprays is modified and its applicability to gas-on-liquid impinging sprays are verified. Another technique based on the Hough transform which is feature extraction technique for extracting quantitative information has also been developed and used for gas-on-liquid impinging injectors. A comparative study of conventional liquid-on-liquid doublet with gas-on-liquid impinging injectors are first made to establish the importance of studying gas-on-liquid impinging injectors. The study identifies the similarities and differences between the two types and highlights the features that make such injectors attractive as replacements to coaxial configuration. Spray structure, drop-size mass distributions are quantified for the purpose
of comparison. This is followed by a parametric study of the gas-on-liquid impinging injectors carried out using identified control variables. Though momentum ratio appeared to be a suitable parameter to describe the spray at any given impingement angle, the variations due to impingement angle had to be factored in. It was found that normal gas momentum to liquid mass is an apt parameter to generalize the spray characteristics. It was also found that using identical nozzles for desired mass ratio could lead to rather large deflection of the spray which may not be acceptable in combustion chamber design. One way of overcoming this is to work with unequal orifice sizes for gas and liquid. It was found that using smaller gas orifice for a given liquid orifice resulted in lower SMD (Sauter Mean Diameter of the spray) for constant gas and liquid mass flow rates. This is attributable to the high dynamic
pressure of gas in the case of smaller gas orifices for the same mass flow rate. The impinging liquid jets with unequal momentum in the doublet configuration would
result in non-uniform mass and mixture ratio distribution within the combustion chamber
which may have to operate under varying conditions of mass flow rates and/or mixture
ratio. The symmetrical arrangement of triplet configuration can eliminate this problem at the same time generating finely atomized spray and a homogeneous mixture ratio. In view of the scanty literature available in this field, the atomization characteristics of the spray
generated by liquid centered triplet jets are examined in detail. It was found that as in the case of gas-on-liquid impinging doublets, normal gas momentum to liquid mass is an ideal parameter in describing the spray. Variants of this configuration are studied recently for many other applications too. As done in the case of doublets, efforts have also been made to compare gas centered triplet to liquid-liquid triplet. It was found that the trend of SMD of gas centered triplet is different from that of liquid-liquid triplets, thus pointing to a different mechanism in play. The SMD in the case of liquid-liquid triplets decreases monotonically with increasing specific normal momentum. It is to be noted that specific normal momentum is an ideal
parameter for describing the spray characteristics of liquid-liquid triplets and doublets. In the case of gas centered triplet the SMD first increases and then decreases with specific normal momentum, the inversion point depends on the gas mass flow rate for a constant specific normal momentum.
The thesis concludes with a summary of the major observations of spray structures for
all the above injector configurations and quantifies the parametric dependencies that would be of use to engineering design
|
19 |
Multiphase fluid hammer: modeling, experiments and simulationsLema Rodríguez, Marcos 10 October 2013 (has links)
This thesis deals with the experimental and numerical analysis of the water hammer phenomenon generated by the discharge of a pressurized liquid into a pipeline kept under vacuum conditions. This flow configuration induces several multiphase phenomena such as cavitation and gas desorption that cannot be ignored in the water hammer behavior.<p><p>The motivation of this research work comes from the liquid propulsion systems used in spacecrafts, which can undergo fluid hammer effects threatening the system integrity. Fluid hammer can be particularly adverse during the priming phase, which involves the fast opening of an isolation valve to fill the system with liquid propellant. Due to the initial vacuum conditions in the pipeline system, the water hammer taking place during priming may involve multiphase phenomena, such as cavitation and desorption of a non-<p>condensable gas, which may affect the pressure surges produced in the lines. Even though this flow behavior is known, only few studies model the spacecraft hardware configuration, and a proper characterization of the two-phase flow is still missing. The creation of a reliable database and the physical understanding of the water hammer behavior in propulsion systems are mandatory to improve the physical models implemented in the numerical codes used to simulate this flow configuration.<p><p>For that purpose, an experimental facility modeling a spacecraft propulsion system has been designed, in which the physical phenomena taking place during priming are generated under controlled conditions in the laboratory using inert fluids. An extended experimental campaign was performed on the installation, aiming at analyzing the effect of various working parameters on the fluid hammer behavior, such as the initial pressure in the line, liquid saturation with the pressurant gas, liquid properties and pipe configuration. The influence of the desorbed gas during water hammer occurrence is found to have a great importance on the whole process, due to the added compressibility and lower speed of sound by an increasing amount of non-condensable gas in the liquid + gas mixture. This results in lower pressure levels and faster pressure peaks attenuation, compared to fluids without desorption. The two-phase flow was characterized by means of flow visualization of the liquid front at the location where the fluid hammer is generated. The front arrival was found to be preceded by a foamy mixture of liquid, vapor and non-condensable gas, and the pressure wave reflected at the tank may induce the liquid column separation at the bottom end. While column separation takes place, the successive pressure peaks are generated by the impact of the column back against the bottom end.<p><p>The resulting experimental database is then confronted to the predictions of the 1D numerical code EcosimPro/ESPSS used to assess the propulsion system designs. Simulations are performed with the flow configuration described before, modeling the experimental facility. The comparison of the numerical results against the experimental data shows that aspects such as speed of sound computation with a dissolved gas and friction modeling need to be improved. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
20 |
Conceptual Design of an Air-Launched Three-Staged Orbital Launch Vehicle / Konceptuell Design av en Luftlanserad TrestegsraketRasmussen, Måns January 2021 (has links)
The objective of this study was to design a launch vehicle capable of deploying a nanosatellite into a Sun-synchronous orbit at 500 km orbital altitude from the JAS 39E/F Gripen fighter aircraft. This was achieved by first performing theoretical calculations for the required nozzles and solid propellant grain configurations for the first two solid stages, followed by the necessary liquid propellant configuration for the third stage. Lastly, two methods were investigated in solving the trajectory ascent problem for the launch vehicle design. First, by stating the trajectory problem as an initial value problem while guessing a Sigmoidal steering law. Secondly, by stating the trajectory problem as a boundary value problem. The latter was solved by transcribing the trajectory problem into a nonlinear program where a parametric steering law was derived using a Sequential quadratic programming algorithm.Ultimately, resulting in a launch vehicle design with a gross lift-off mass of 1,289 kg, capable of launching an 8.4 kg payload into the targeted orbit, with suggested modifications to increase the possible payload mass to 12.9 kg. / Målet med den här studien var att designa en luftlanserad trestegsraket kapabel till att transportera en nanosatellit upp till en solsynkron omloppsbana på 500 km altitud från ett JAS 39E/F Gripen jaktflygplan. Det gjordes genom att först beräkna de nödvändiga dysorna och krutladdningsformerna för de två första stegen tillsammans med en flytande bränsledesign för det tredje steget. Två metoder undersöktes för bananalysen. Först genom att anta en Sigmoidal styrningsfunktion för pitchen, sedan genom att transkribera problemet till ett icke-linjärt program där en parametrisk styrlag togs fram genom att använda en Sequential quadratic programming algoritm. Slutligen presenterades en raketdesign med en total vikt på 1 289 kg, kapabel till att skjuta upp en nyttolast på 8,4 kg till den önskade omloppsbanan tillsammans med förslag som kan öka den möjliga nyttolasten till 12,9 kg.
|
Page generated in 0.0641 seconds