Spelling suggestions: "subject:"liquidphase"" "subject:"fluidphase""
121 |
Two-dimensional material inks and composites for printed electronics and energyCarey, Tian January 2018 (has links)
This thesis explores the application of two-dimensional (2D) materials such as graphene and single layer hexagonal boron nitride (h-BN) which are produced by liquid phase exfoliation for use in printed electronics and energy composite applications. In Chapter 2 I give a broad overview of the electrical, mechanical and optical properties of 2D materials among other nanomaterials that were used in the thesis such as carbon nanotubes and conductive polymers. Additionally I review the techniques and theory behind the exfoliation and dispersion of functional layered materials. In Chapter 3 I present the coating and printing techniques which were used in this thesis along with the experimental techniques and methods which I use to characterise my inks, films and devices. Chapter 4 is the first experimental chapter of the thesis and demonstrates the printing of 2D material heterostructures to create fully printed dieletrically gated field effect transistors with 2D materials on textile and polymer substrates. In this chapter I also demonstrate reprogrammable volatile memory, p and n type inverters, complementary inverters, and logic gates which pave the way to fully printed integrated circuits, operational at room temperature and pressure with 2D materials processed in liquid. In Chapter 5, I review spray coating (a highly industrial scalable printing technique), in terms of the optimisation of its parameters to achieve thin films of nanomaterials on three-dimensional (3D) surfaces. I then demonstrate that it is possible to create large area (∼750 cm2) transparent conducting films around curved surfaces with spray coating enabling a semi-transparent (around 360°) spherical touch sensor for interactive devices. Chapter 6 explores printed photonics for applications in terahertz (THz) frequencies. Here I demonstrate the feasibility of liquid phase exfoliated graphene to create THz saturable absorbers (SAs) which could enable many applications in THz frequencies such as tomography or time-resolved spectroscopy that require mode-locked (i.e. enabling a train of short pulses to be derived from continuous-wave operation) THz pulses. I also demonstrate that these SAs can be inkjet printed on demand providing unprecedented compactness in a quantum cascade laser system. Finally in Chapter 7, I look at the application of graphene in microbial fuel cells (MFC). I demonstrate that enhanced MFC output arises from the interplay of the improved surface area, enhanced conductivity, and catalytic surface groups of a graphene based electrode. As a final step graphene based anodes and cathodes which were entirely platinum free were combined to create an environmentally sustainable energy source.
|
122 |
Etude de la stabilité à l'oxydation des carburants en phase liquide / Oxidation stability of fuels in liquid phaseChatelain, Karl 15 December 2016 (has links)
La stabilité des carburants en phase liquide est de premier ordre dans le domaine du transport. Par exemple, les carburants, les lubrifiants ou les additifs doivent être stables de leur production jusqu'à leur utilisation. Cette thèse a pour but de développer et de valider une méthodologie alliant l’acquisition de données expérimentales et le développement de modèles cinétiques pour l'autoxydation en phase liquide.Expérimentalement, une approche complémentaire a été mise en place pour obtenir à la fois des données de réactivité globales via un appareil PetroOxy et des profils d’espèces via un autoclave instrumenté.Numériquement, une méthodologie basée sur un générateur de mécanismes est proposée pour obtenir une chimie détaillée en phase liquide. Les paraffines linéaires et branchées sont étudiées comme des carburants modèles représentatifs de l'autoxidation de carburants réels afin de valider l’approche proposée. Ces familles chimiques sont représentatives de la composition des carburants réels et alternatifs.La réactivité des n-paraffines de C8 à C16 ainsi que d’isomères de l’octane a été étudiée en PetroOxy sur la gamme de température 373-433 K. Puis, des profils d’espèces détaillés de la phase gaz et de la phase liquide ont été obtenus durant l’étude de l’oxydation du n-C8 et du 2-methylheptane dans un autoclave à 383 K et 10 bars. Des mécanismes cinétiques détaillés ont été développé pour toutes les molécules jusqu’à C14. Les mécanismes reproduisent qualitativement la formation des espèces majoritaires lors de l’autoxidation des alcanes ainsi que les tendances observées liées à la longueur de chaîne et la ramification. L’analyse des mécanismes cinétiques a mis en avant le rôle prédominant des radicaux peroxy (ROO) et peroxy-hydroperoxyde (HOOQOO) dans la consommation de carburants modèles.Cette étude a permis d’améliorer la compréhension des processus d’autoxidation des alcanes linéaires et branchés. L’étude de nouveaux systèmes permettra d’améliorer la compréhension globale des processus d’autoxidation et, de réduire l’écart de compréhension existant entre l’autoxidation des carburants réels et des carburants modèles. / Liquid phase stability is a major concern in the transportation and the energy fields. Relevant examples are fuels, lubricants and additives which have to be stable from their production to their application (engine, combustors). This thesis aims to develop and validate a complete methodology combining both experimental data acquisition and the development of kinetic models for liquid phase autoxidation.The experimental methodology is based on a complementary approach to obtain (i) a global reactivity descriptor (Induction Periods) and (ii) detailed species profiles respectively using a PetroOxy device and an instrumented autoclave. Numerically, the presented methodology includes detailed liquid phase mechanisms generation with an automatic mechanism generator (RMG). Normal and iso-paraffins were selected as fuel surrogates for autoxidation to validate the developed methodology. They were selected regarding their large contribution in fuel composition and their growing interest as drop-in fuels.The reactivity of both n-paraffins from C8 to C16 and several C8 iso-paraffins was investigated over a wide temperature range (373-433 K) in the PetroOxy with liquid phase analyses. Then, detailed species profiles from the autoxidation of both n-octane and 2-methylheptane in autoclave were obtained at 383 K and 10 bars. Detailed liquid phase mechanisms were developed for all molecules tested up to C14. Mechanisms qualitatively reproduce the overall phenomenology of the chain length, the branching and the major species profiles observed experimentally. Mechanisms analysis allow to identify the main consumption pathways of alkanes through peroxy (ROO) and peroxy-hydroperoxide radicals (HOOQOO) over the temperature range investigated (373-473 K).This study permitted to increase the comprehension of autoxidation processes involved in normal and branched alkanes. The study of new chemical systems will increase the global comprehension of autoxidation processes and in fine it will reduce the gap between the current autoxidation knowledge and the real fuel autoxidation.
|
123 |
Reator anaeróbio-aeróbio de leito fixo em escala piloto, com recirculação da fase líquida, aplicado ao tratamento de esgoto sanitário / Anaerobic-aerobic pilot-scale fixed-bed reactor, with recycle of the liquid phase, applied to the treatment of domestic sewageOliveira Netto, Antonio Pedro de 29 April 2011 (has links)
Este trabalho fundamentou-se na concepção, desenvolvimento tecnológico, ampliação de escala e avaliação do comportamento de sistema combinado anaeróbio-aeróbio de leito fixo e fluxo ascendente, com recirculação da fase líquida, para tratamento de esgoto sanitário. O reator, em escala piloto, foi construído em formato cilíndrico e confeccionado em fibra de vidro com volume total de aproximadamente 2,5 \'M POT.3\', com intuito de desenvolver um sistema capaz de operar como única unidade de tratamento para remoção de matéria orgânica e nitrogênio, reduzindo a geração de lodo e o consumo de energia pela combinação dos processos anaeróbio e aeróbio, possibilitando o aproveitamento das vantagens de cada um e minimizando seus aspectos negativos. Os melhores resultados operacionais foram encontrados para a etapa com tempo de detenção hidráulica total (TDH) de 12 horas e razão de recirculação (r) igual a 3,0, apresentando eficiências médias de remoção de DQO, \'N\'-NTK e SST de 92 ± 3%; 68 ± 11% e 75 ± 7%, respectivamente, com valores médios efluentes de 54 ± 22 mgDQO/L, 14 ± 10 mg \'N\'-NTK/L e 70 ± 42 mgSST/L. Os valores médios de carga orgânica volumétrica (COV) e carga volumétrica de nitrogênio (CVN) removidas foram de 1,08 ± 0,04 kgDQO/\'M POT.3\'.dia e 0,06 ± 0,02 kgNTK/\'M POT.3\'.dia para esta etapa. A estabilidade operacional durante a etapa com TDH de 12 h, a alta remoção de matéria orgânica e nitrogênio, sem a necessidade de adição de fonte exógena de carbono, para promover o processo de desnitrificação, e de suplementação de alcalinidade consumida durante a nitrificação, e a reduzida necessidade de manutenção devido à tecnologia de fabricação adotada, comprovam a viabilidade técnica de utilização do reator combinado de leito fixo como unidade compacta para pequenas comunidades ou vazões afluentes, para tratamento de esgoto sanitário. / This work was based on design, technology development, scale up and performance evaluation of an up-flow combined anaerobic-aerobic fixed bed system, with recycle of the liquid phase, for treatment of domestic sewage. The pilot scale reactor was built in a fiberglass cylindrical shape with a total volume of approximately 2.5 \'M POT.3\', aiming at the development of a system capable of operate as a single treatment unit for organic matter and nitrogen removal, with low sludge production and energy consumption by the advantages of combination of anaerobic and aerobic processes. The improved operating results were found for the condition with overall hydraulic retention time (HRT) of 12 hours and recycle ratio (r) equal to 3.0, with average removal efficiencies of COD, TKN and TSS of 92 ± 3%, 68 ± 11% and 75 ± 7%, respectively, with average effluent values of 54 ± 22 mgCOD/L, 14 ± 10 mgTKN/L and 70 ± 42 mgTSS/L. The average values of removed organic loading rate (OLR) and nitrogen volumetric loading (NVL) reached 1.06 ± 0.04 kgCOD/\'M POT.3.d and 0.06 ± 0.02 kgTKN/\'\'M POT.3\'.d for this phase. The operational stability during the stage with HRT of 12 h, the high organic matter and nitrogen removal, without addition of exogenous carbon source (electron donor) to promote the denitrification process, with no supplementation of alkalinity consumed during nitrification, and the reduced maintenance due to manufacturing technology adopted, proved the technical feasibility of the combined fixed-bed reactor as a compact unit for small communities or low inflow rates, for treatment of domestic sewage.
|
124 |
Reator anaeróbio-aeróbio de leito fixo, com recirculação da fase líquida, aplicado ao tratamento de esgoto sanitário / Anaerobic-aerobic fixed bed reactor, with recycle of the liquid phase, applied to the treatment of domestic sewageAntonio Pedro de Oliveira Netto 28 March 2007 (has links)
Este trabalho avaliou o desempenho de um sistema que combina os processos anaeróbio e aeróbio, para tratamento de esgoto sanitário, operado de modo contínuo sem e com recirculação da fase líquida. A combinação dos processos anaeróbio e aeróbio tem como objetivo aproveitar as vantagens de cada um, minimizando seus aspectos negativos. Foi utilizado um reator, em escala de bancada, de leito fixo e fluxo contínuo de escoamento ascendente com argila expandida e espuma de poliuretano como suportes de imobilização da biomassa. O desempenho do sistema foi avaliado em três diferentes tempos de detenção hidráulica (TDH), 6, 8 e 10 horas, na fase anaeróbia, nos quais os melhores valores de remoção de matéria orgânica chegaram a 80%, com valores de DQO efluente abaixo de 150 mg/L. Com a inserção da fase aeróbia ao sistema (TDH de aproximadamente 11 horas, sendo 8 horas para a fase anaeróbia e 3 horas para a fase aeróbia), a eficiência subiu para mais de 90% com DQO efluente abaixo dos 50 mg/L. A nitrificação ocorreu perto do 15° dia operacional do sistema combinado e estava praticamente estável ao fim dessa etapa operacional. Após o 20º dia de operação as concentrações de nitrito mantiveram-se sempre baixas, o que indica equilíbrio da nitrificação. Foram obtidos ganhos quando feita recirculação do efluente tratado, principalmente em relação à remoção de matéria orgânica (95%) e remoção de nitrogênio total que foi de 75% para razão de recirculação de 1,5. O reator avaliado apresentou estabilidade operacional, alta remoção de matéria orgânica e nitrogênio sem a necessidade de adição de fonte exógena de carbono e de suplementação de alcalinidade. / This work evaluated the performance of a system that combines anaerobic and aerobic processes, for treatment of domestic sewage. The bench-scale fixed-film reactor was operated in a continuous way without and with recycle of the liquid phase. Expanded clay and polyurethane foam were used as supports for immobilization of the biomass. Initially, the system was operated under anaerobic condition and its performance was evaluated for three different hydraulic retention times (HRT), 6, 8 and 10 h. In this phase, COD removal efficiency of 80% was reached for HRT of 10 h, with effluent COD below 150 mgCOD/L. The combined anaerobic-aerobic operation (HRT of approximately 11 h, being 8 h for the anaerobic phase and 3 h for the aerobic phase) favored the organic matter removal that reached 90%, with effluent COD below 50 mgCOD/L. The operation with liquid recycle provided the best results with COD removal of 95% and total nitrogen removal of 75% under recycle ratio of 1.5. The anaerobic-aerobic fixed bed reactor, with recycle of the liquid phase, proved to be an excellent alternative for domestic sewage treatment, mainly when organic matter and nitrogen removals are required. The concomitant C and N removal without addition of exogenous source electron donor and with no additional alkalinity supplementation was the main advantage of this reactor over the conventional reactors applied for this purpose.
|
125 |
Desenvolvimento de métodos analíticos para a identificação de drogas facilitadoras de crime em amostras de urina / Developing analytical methods for identification of drug-facilitated crime in urine samplesAndré Valle de Bairros 12 December 2014 (has links)
As drogas facilitadoras de crime (DFC) são uma série de substâncias químicas que permitem o ato sexual e/ou roubo com pouca ou nenhuma resistência da vítima. Benzodiazepínicos, gama-hidroxibutirato (GHB), cetamina e etanol são clássicas DFC, porém outras substâncias também têm sido utilizadas. Devido às diferentes classes de DFC e a necessidade de métodos sensíveis, a determinação dessas substâncias é um desafio aos toxicologistas forenses. A proposta do estudo foi desenvolver métodos analíticos para determinação principais analitos alvos de DFC para benzodiazepínicos, cetamina e GHB em amostras de urina. Esta matriz biológica é considerada uma amostra não-invasiva e apresenta um período de detecção maior que o sangue. A preparação das amostras foi avaliada através de microextração em fase líquida (LPME) e extração líquido-líquido (LLE). A LPME é uma técnica de extração de drogas que utiliza menor quantidade de solventes orgânicos, maior praticidade e possibilidade de obtenção de altos valores de recuperação. Os analitos foram determinados por cromatografia gasosa acoplada à espectrometria de massas (GC-MS). A LPME validada para benzodiazepínicos e seus produtos de biotransformação exigiu uma combinação de solventes e dupla derivatização para atingir a sensibilidade exigida, enquanto o método para determinação de cetamina, norcetamina e deidronorcetamina utilizou óleo essencial de eucalipto como meio extrator, caracterizando-se um procedimento ecologicamente correto com alta sensibilidade. A extração de GHB foi efetiva por LLE com redução da quantidade de solvente e tempo de análise sem o prejuízo na sensibilidade. Em geral, os métodos desenvolvidos neste trabalho são sensíveis e confiáveis para todos os analitos relatados e conclui-se que a LPME é uma técnica de preparo de amostra eficiente, versátil de baixo custo. Estas condições permitem que sua implementação em qualquer laboratório de análises toxicológicas, podendo ser aplicada em situações de DFC ou de qualquer outra natureza. / Drug-facilitated crime (DFC) are a series of chemicals that allow the sexual act and/or theft with little or no resistance from the victim. Benzodiazepines, gamma-hydroxybutyrate (GHB) and ketamine and ethanol are considered classic DFC, however other substances were also used as the DFC. Due to the different classes of DFC and the need for sensitive methods, the determination of these substances is a challenge to forensic toxicologists. The purpose of this study was to develop analytical methods for determination of the main target analytes of DFC for benzodiazepines, ketamine and GHB in urine samples. This biological matrix is considered a non-invasive sample and shows a larger window of detection than blood. Sample preparation was assessed using liquid phase microextraction (LPME) and liquid-liquid extraction (LLE). The LPME is a drug extraction technique that uses less organic solvents, greater practicality and possibility of obtaining high recovery values. The analytes were determined by gas chromatography - mass spectrometry (GC-MS). The validated LPME technique for benzodiazepines and their metabolites required a combination of solvents and double derivatization to achieve the required sensitivity, while the ketamine, norketamine and dehydronorketamine method used essential oil of eucalyptus as solvent, characterizing a green chemistry approach with high sensitivity. The extraction of GHB was effective by LLE with a reduced amount of solvent and the analysis time without loss in sensitivity. In general, the methods developed in this work using GC-MS are sensitive and reliable for all analytes reported and LPME technique showed to be an efficient sample preparation, versatile and low cost. These conditions allow LPME implementation in any laboratory of toxicological analysis and it can be applied in situations of DFC or any other kind of analysis.
|
126 |
Tratamento anaeróbio de águas residuárias, em batelada, com microrganismos imobilizados e circulação da fase aquosa / Anaerobic batch wastewater treatment with immobilized biomass and external circulation of the liquid phaseCamargo, Eduardo Freitas Moraes de 25 October 2000 (has links)
O presente trabalho constou da concepção de um reator anaeróbio em regime de batelada com circulação da fase aquosa contendo biomassa imobilizada em espuma de poliuretano. O reator foi operado em ciclos de 8 h e mantido a 30 ± 1ºC tratando água residuária sintética elaborada à base de glicose, com concentração de aproximadamente 500 mgDQO/L. O estudo hidrodinâmico realizado com velocidade superficial de recirculação entre 0,16 e 0,80 cm/s indicou que o tempo de mistura obtido em todas as condições pode ser considerado desprezível quando comparado ao tempo total do ciclo, e também permitiu considerar o comportamento do escoamento no leito como o de um reator pistonado. O desempenho do reator no tratamento da água residuária foi avaliado para a condição sem circulação e também para velocidades superficiais de recirculação entre 0,03 e 0,30 cm/s. Os resultados obtidos indicaram que o reator apresentou desempenho satisfatório e boa estabilidade, apresentando eficiências de até 96% de remoção da matéria orgânica. O aumento da velocidade superficial de recirculação diminuiu a resistência a transferência de massa na fase líquida, ocasionando um aumento de 115% na velocidade global de reação, estimada através do ajuste dos valores experimentais da concentração de substrato ao modelo de primeira ordem. / A new configuration of an anaerobic bioreactor with external circulation of the liquid phase wherein the biomass was immobilized on a polyurethane foam matrix is proposed. 8-hours cycles were cartied out at a temperature of 30 ± 1°C treating glucose synthetic wastewater at a concentration around 500 mg/L. A hydrodynamic study performed at 0.16 to 0.80 cm/s showed that the obtained mixture time is insignificant compared to the total cycles time, and the flow through the polyurethane foam bed can be represented by a plug flow. The reactor\'s performance assessed without circulation and with circulating liquid superficial velocity between 0.03 and 0.30 cm/s. The reactor attained operating stability and a COD removal efficiency of 96% was achieved. The increase in the liquid superficial velocity decreases the liquid resistance mass transfer, resulting in an increase of 115% in the global reaction velocity, estimated through the fit of a first model equation on the substrate concentration experimental values.
|
127 |
PARAMETERS AFFECTING THE RESISTIVITY OF LP-EBID DEPOSITED COPPER NANOWIRESSmith, Gabriel 01 January 2018 (has links)
Electron Beam Induced Deposition (EBID) is a direct write fabrication process with applications in circuit edit and debug, mask repair, and rapid prototyping. However, it suffers from significant drawbacks, most notably low purity. Work over the last several years has demonstrated that deposition from bulk liquid precursors, rather than organometallic gaseous precursors, results in high purity deposits of low resistivity (LPEBID). In this work, it is shown that the deposits resulting from LP-EBID are only highly conductive when deposited at line doses below 25μC/cm. When the dose exceeds this value, the resulting structure is highly porous providing a poor conductive pathway. It is also shown that beam current has no significant effect on the resistivity of the deposits. Nanowires with resistivity significantly lower than the previous best result of 67μΩ•cm were achieved, with the lowest resistivity being only 6.6μΩ•cm, only a factor of 4 higher than that bulk copper of 1.7μΩ•cm.
|
128 |
Aspects of Silicon Solar Cells: Thin-Film Cells and LPCVD Silicon NitrideMcCann, Michelle Jane, michelle.mccann@uni-konstanz.de January 2002 (has links)
This thesis discusses the growth of thin-film silicon layers suitable for solar cells using
liquid phase epitaxy and the behaviour of oxide LPCVD silicon nitride stacks on silicon
in a high temperature ambient.¶
The work on thin film cells is focussed on the characteristics of layers grown using liquid
phase epitaxy. The morphology resulting from different seeding patterns, the transfer of
dislocations to the epitaxial layer and the lifetime of layers grown using oxide compared
with carbonised photoresist barrier layers are discussed. The second half of this work
discusses boron doping of epitaxial layers. Simultaneous layer growth and boron doping
is demonstrated, and shown to produce a 35um thick layer with a back surface field
approximately 3.5um thick.¶
If an oxide/nitride stack is formed in the early stages of cell processing, then characteristics of the nitride may enable increased processing flexibility and hence the realisation
of novel cell structures. An oxide/nitride stack on silicon also behaves as a good anti-
reflection coating. The effects of a nitride deposited using low pressure chemical vapour
deposition on the underlying wafer are discussed. With a thin oxide layer between the
silicon and the silicon nitride, deposition is shown not to significantly alter effective life-times.¶
Heating an oxide/nitride stack on silicon is shown to result in a large drop in effective
Lifetimes. As long as at least a thin oxide is present, it is shown that a high temperature
nitrogen anneal results in a reduction in surface passivation, but does not significantly
affect bulk lifetime. The reduction in surface passivation is shown to be due to a loss of
hydrogen from the silicon/silicon oxide interface and is characterised by an increase in
Joe. Higher temperatures, thinner oxides, thinner nitrides and longer anneal times are all
shown to result in high Joe values. A hydrogen loss model is introduced to explain the
observations.¶
Various methods of hydrogen re-introduction and hence Joe recovery are then discussed
with an emphasis on high temperature forming gas anneals. The time necessary
for successful Joe recovery is shown to be primarily dependent on the nitride thickness
and on the temperature of the nitrogen anneal. With a high temperature forming gas
anneal, Joe recovery after nitrogen anneals at both 900 and 1000oC and with an optimised
anti-reflection coating is demonstrated for chemically polished wafers.¶
Finally the effects of oxide/nitride stacks and high temperature anneals in both nitrogen
and forming gas are discussed for a variety of wafers. The optimal emitter sheet
resistance is shown to be independent of nitrogen anneal temperature. With textured
wafers, recovery of Joe values after a high temperature nitrogen anneal is demonstrated
for wafers with a thick oxide, but not for wafers with a thin oxide. This is shown to be
due to a lack of surface passivation at the silicon/oxide interface.
|
129 |
Mechanical properties and microstructure of laser sintered and starch consolidated iron-based powdersWang, Yu January 2008 (has links)
<p>In powder metallurgy research field, Direct Metal Laser Sintering (DMLS) and Metal Powder Starch Consolidation (MPSC) are relatively new rapid forming techniques to fabricate complex and near net-shaped components. The working principles of DMLS are to melt and fuse metal powder layer by layer in computer controlled systems to pile up components like three dimensional printing. It has been for instance extensively used for mould inserts, die parts, and functional metal prototypes. Another, less explored method, starch consolidation is a pressureless direct casting method which consists principally of mixing powder slurry, casting into moulds, consolidation, drying, and sintering. With a strong focus on both methods, the study here combines several strong material technology sectors; powder, rapid forming, mechanical property testing and surface technology. It covers the processing chain from green body preparation, optimization of</p><p>sintering, nitriding, post sinter heat treatment, to modeling and assessment of material behaviour for end-user applications. An iron based powder and a high vanadium high speed steel powder with low and high carbon contents were used in the DMLS and MPSC processes, respectively. The overall aim of the study is to synthesize near net-shaped powder-based components, to characterize pores and microstructure, and to establish a fundamental understanding of failure mechanisms of powder based materials in bending fatigue, thermal fatigue and wear.</p><p>The study showed the DMLS and MPSC technologies could produce shaped components with a multi-phased structure, controllable nitriding depth and high relative densities in a range of 97 - 99.7 %. Materials' heterogeneity and porosity have detrimental influence on mechanical properties, especially on crack initiation and subsequent propagation.</p>
|
130 |
Drying of Multicomponent Liquid FilmsLuna, Fabio January 2004 (has links)
The convective drying of thin layers of multicomponentliquid mixtures into an inert gas, and the influence ofdifferent process controlling mechanisms on drying selectivityis studied. Drying experiments under gas-phase-controlledconditions are performed by low intensity evaporation, fromfree liquid surfaces, of ternary mixtures without non-volatilesolutes. Liquid-side-controlled experiments are carried out bydrying a multicomponent polymeric solution containing twovolatile components, one non-volatile polymer and an optionalnonvolatile softening substance. Mathematical models to describe gas- andliquid-side-controlled drying based on interactive diffusion inboth liquid and gas phases as the main mechanisms for masstransfer are developed. For gas-phase-controlled drying, astability analysis of the ordinary differential equations thatdescribes the evaporation process is performed. Isothermal andnon-isothermal drying processes are considered in batch andcontinuous modes. The mathematical model to describe thecomposition profiles during batch drying of the polymeric film,considering liquid resistance, is solved numerically. Due tothe lack of experimental data, properties for this polymericsystem are estimated by using established methods. Ananalytical solution of the diffusion equation, by assuming anisothermal drying process and a constant matrix ofmulticomponent diffusion coefficients is developed. For thecontinuous case, liquid-side resistance is studied by modellingevaporation of a multicomponent falling liquid film into aninert gas including indirect heating. The results of the gas-phase-controlled model are in goodagreement with experimental results. For the polymeric film,the agreement is only qualitative since the model does notaccount for a membrane that develops on the film surface. Thestability analysis permits the prediction of trajectories andfinal state of a liquid mixture in a gas-phase-controlleddrying process. For isothermal evaporation of ternary mixturesinto pure gas, the solutions are trajectories in the phaseplane represented by a triangular diagram of compositions. Thepredicted ternary dynamic azeotropic points are unstable orsaddle. On the other hand, binary azeotropes are stable whenthe combination of the selectivities of the correspondingcomponents is negative. In addition, pure component singularpoints are stable when they are contained within theirrespective isolated negative selectivity zones. Undernon-isothermal conditions, maximum temperature valuescharacterise stable azeotropes. Incremental loading of the gaswith one or more of the components leads to a node-saddlebifurcation, where a saddle azeotrope and a stable azeotropecoalesce and disappear. For continuous drying, the singularpoints are infinite and represent dynamic equilibrium pointswhose stability is mainly dependent on the ratio of inletgas-to-liquid flow rates. As long as the process isgas-phasecontrolled, these results also apply to a porous solidcontaining a liquid mixture. In general, liquid-side control makes the drying processless selective but it is difficult to maintain this conditionduring the whole process. Under the influence of its owndynamics, a process starting as liquid-side-controlled tendstowards a gas-phase-controlled process. The presence ofnon-volatile components and indirect heating may delay thisdevelopment. Considering the evolution of the processcontrolling steps and its influence on selectivity, a modelaimed at describing the complete trajectory of a drying orevaporation process must include the coexistence of allrelevant mechanisms. Keywords:ternary mixture, falling film, diffusionequation, gas-phase control, liquid-phase control, selectivity,stability analysis, polymeric solution, evaporation, azeotrope,batch drying, continuous drying.
|
Page generated in 0.044 seconds