• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Élaboration de nanoparticules par décharges spark nanosecondes dans des liquides diélectriques : compréhension des mécanismes élémentaires et synthèse de composites / Elaboration of nanoparticles by spark discharge nanoseconds in dielectric fluids : understanding basic mechanisms and synthesis of composites

Kabbara, Hiba 20 February 2018 (has links)
La production de nanoparticules (NPs) par des décharges spark en phase liquide permet d’atteindre des rendements jusqu’à présent inégalés de l’ordre de quelques centièmes de milligramme par joule. Même si l’essentiel de l’énergie est dissipé dans la formation de la décharge, l’érosion des électrodes métalliques permet la production efficace de NPs. La nature des NPs formées est largement tributaire du liquide diélectrique dans lequel la décharge est réalisée. Il est ainsi possible de contrôler les nanoparticules produites en choisissant de manière ad hoc les électrodes et le liquide. Nous cherchons dans ce travail à comprendre les mécanismes qui ont lieu durant la décharge en étudiant différents cas d’élaboration de NPs soit d’alliages soit de composites. Les NPs synthétisées auront des applications dans divers domaines selon le(s) matériau(x) choisi(s). À l’aide d’un générateur d’impulsions nanosecondes, les décharges ont été créées en appliquant une impulsion de haute tension (10 kV- 200ns- 10 Hz) entre deux électrodes immergées dans de l’azote liquide. Trois systèmes principaux ont été étudiés : Si-Sn, Cu-Zn et Cu-Ag. Les tests ont été réalisés avec des électrodes pures ou avec des alliages contenant les 2 éléments en proportions variables pour améliorer notre compréhension sur la manière dont les nanoparticules sont formées. Des analyses en microscopie électronique en transmission à haute résolution (HRTEM), en spectroscopie des rayons X à dispersion d'énergie (EDX), en spectroscopie de perte d'énergie des électrons (EELS) et des analyses de micro-diffraction ont été menées pour caractériser les NPs synthétisées (morphologie, cristallinité, composition chimique, etc.). Enfin, des mesures de spectroscopie d’émission optique résolues dans le temps ont été réalisées pour disposer d’informations sur l’évolution temporelle des raies émises au cours de la décharge et ainsi sur les conditions qui prévalent dans le plasma / Discharges in liquids offer a simple way to synthesize nanoparticles at high rate and low cost. When spark discharges are ignited in a dielectric liquid, a strong heating of the electrode material occurs, producing a metallic vapor from which nanoparticles grow by condensation. Even if most of the energy is dissipated in the formation of the discharge, the erosion of the metal electrodes allows the efficient production of NPs. The nature of the NPs formed is largely dependent on the dielectric liquid in which the discharge is performed. It is thus possible to control the nanoparticles produced by choosing the electrodes and the liquid in an appropriate manner. We seek in this work to understand the mechanisms that take place during the discharge by studying different cases of elaboration of NPs either alloys or composites. The synthesized NPs will have applications in various fields depending on the material(s) chosen. Using a nanosecond pulse generator, the discharges were created by applying a high voltage pulse (10 kV-200ns-10 Hz) between two electrodes immersed in liquid nitrogen. Three main systems have been studied: Si-Sn, Cu-Zn and Cu-Ag. The tests were performed with pure electrodes or alloys containing the 2 elements in varying proportions to improve our understanding of how nanoparticles are formed. High resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), electron energy loss spectroscopy (EELS) and micro-diffraction analyzes were carried out to characterize the synthesized NPs (morphology, crystallinity, chemical composition, etc.). Finally, time-resolved optical emission spectroscopy measurements were performed to obtain information on the temporal evolution of the lines emitted during the discharge and thus on the conditions that prevail in the plasma
2

ETUDE EXPERIMENTALE DES PHENOMENES INDUITS DANS UN LIQUIDE PAR UNE INJECTION FORTEMENT LOCALISEE D'ENERGIE

Qotba, Rachid 05 December 2005 (has links) (PDF)
L'expérience montre que tout liquide isolant soumis à une tension croissante est traversé par un courant qui croît fortement avec la tension jusqu'au claquage. Pour un liquide isolant, le claquage est un phénomène destructif qui dégrade de façon irrémédiable sa tenue diélectrique, c'est-à-dire que celui-ci ne pourra plus tenir le même niveau de tension. Ce phénomène est la cause de la plupart des défaillances du matériel électrique.<br />Le but de cette étude est de comprendre la formation d'une bulle suite à une micro-décharge électrique dans un vaste domaine de pression (pression inférieure et largement supérieure à la pression critique du fluide) et pour différentes températures (T/Cette étude permet de conclure que la bulle atteint, pour R=Rm, un équilibre thermodynamique local défini par la courbe de pression de vapeur saturante lorsque P/Pc. Cette analyse conduit à proposer un modèle thermodynamique semi-empirique permettant de calculer le rayon maximum de la bulle quelle que soit la pression P/ appliquée sur le liquide, à partir de la connaissance uniquement de l'énergie injectée et des propriétés thermodynamique du liquide.<br />L'analyse de l'énergie potentielle de la bulle au cours ses deux premiers cycles montre que, le phénomène le plus probable qui devrait être pris en compte dans le calcul correct de l'énergie perdue entre les deux premières cycles de la bulle, est le flux de matière échangée à l'interface qui devrait conduire à une perte de masse et donc à une variation de la masse volumique du milieu fluide à l'intérieur de la bulle en fonction du temps.

Page generated in 0.0716 seconds