• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Introduction to List Colorings of Graphs

Baber, Courtney Leigh 11 June 2009 (has links)
One of the most popular and useful areas of graph theory is graph colorings. A graph coloring is an assignment of integers to the vertices of a graph so that no two adjacent vertices are assigned the same integer. This problem frequently arises in scheduling and channel assignment applications. A list coloring of a graph is an assignment of integers to the vertices of a graph as before with the restriction that the integers must come from specific lists of available colors at each vertex. For a physical application of this problem, consider a wireless network. Due to hardware restrictions, each radio has a limited set of frequencies through which it can communicate, and radios within a certain distance of each other cannot operate on the same frequency without interfering. We model this problem as a graph by representing the wireless radios by vertices and assigning a list to each vertex according to its available frequencies. We then seek a coloring of the graph from these lists. In this thesis, we give an overview of the last thirty years of research in list colorings. We begin with an introduction of the list coloring problem, as defined by Erdös, Rubin, and Taylor in [6]. We continue with a study of variations of the problem, including cases when all the lists have the same length and cases when we allow different lengths. We will briefly mention edge colorings and overview some restricted list colors such as game colorings and L(p, q)-labelings before concluding with a list of open questions. / Master of Science
2

ON THE COMPUTABLE LIST CHROMATIC NUMBER AND COMPUTABLE COLORING NUMBER

Thomason, Seth Campbell 01 August 2024 (has links) (PDF)
In this paper, we introduce two new variations on the computable chromatic number: the computable list chromatic number and the computable coloring number. We show that, just as with the non-computable versions, the computable chromatic number is always less than or equal to the computable list chromatic number, which is less than or equal to the computable coloring number.We investigate the potential differences between the computable and non-computable chromatic, list chromatic, and coloring numbers on computable graphs. One notable example is a computable graph for which the coloring number is 2, but the computable chromatic number is infinite.
3

5-list-coloring graphs on surfaces

Postle, Luke Jamison 23 August 2012 (has links)
Thomassen proved that there are only finitely many 6-critical graphs embeddable on a fixed surface. He also showed that planar graphs are 5-list-colorable. This thesis develops new techniques to prove general theorems for 5-list-coloring graphs embedded in a fixed surface. Indeed, a general paradigm is established which improves a number of previous results while resolving several open conjectures. In addition, the proofs are almost entirely self-contained. In what follows, let S be a fixed surface, G be a graph embedded in S and L a list assignment such that, for every vertex v of G, L(v) has size at least five. First, the thesis provides an independent proof of a theorem of DeVos, Kawarabayashi and Mohar that says if G has large edge-width, then G is 5-list-colorable. Moreover, the bound on the edge-width is improved from exponential to logarithmic in the Euler genus of S, which is best possible up to a multiplicative constant. Second, the thesis proves that there exist only finitely many 6-list-critical graphs embeddable in S, solving a conjecture of Thomassen from 1994. Indeed, it is shown that the number of vertices in a 6-list-critical graph is at most linear in genus, which is best possible up to a multiplicative constant. As a corollary, there exists a linear-time algorithm for deciding 5-list-colorability of graphs embeddable in S. Furthermore, we prove that the number of L-colorings of an L-colorable graph embedded in S is exponential in the number of vertices of G, with a constant depending only on the Euler genus g of S. This resolves yet another conjecture of Thomassen from 2007. The thesis also proves that if X is a subset of the vertices of G that are pairwise distance Omega(log g) apart and the edge-width of G is Omega(log g), then any L-coloring of X extends to an L-coloring of G. For planar graphs, this was conjectured by Albertson and recently proved by Dvorak, Lidicky, Mohar, and Postle. For regular coloring, this was proved by Albertson and Hutchinson. Other related generalizations are examined.
4

Coloring the Square of Planar Graphs Without 4-Cycles or 5-Cycles

Jaeger, Robert 01 January 2015 (has links)
The famous Four Color Theorem states that any planar graph can be properly colored using at most four colors. However, if we want to properly color the square of a planar graph (or alternatively, color the graph using distinct colors on vertices at distance up to two from each other), we will always require at least \Delta + 1 colors, where \Delta is the maximum degree in the graph. For all \Delta, Wegner constructed planar graphs (even without 3-cycles) that require about \frac{3}{2} \Delta colors for such a coloring. To prove a stronger upper bound, we consider only planar graphs that contain no 4-cycles and no 5-cycles (but which may contain 3-cycles). Zhu, Lu, Wang, and Chen showed that for a graph G in this class with \Delta \ge 9, we can color G^2 using no more than \Delta + 5 colors. In this thesis we improve this result, showing that for a planar graph G with maximum degree \Delta \ge 32 having no 4-cycles and no 5-cycles, at most \Delta + 3 colors are needed to properly color G^2. Our approach uses the discharging method, and the result extends to list-coloring and other related coloring concepts as well.
5

Varianty problému obarvení / Graph coloring problems

Lidický, Bernard January 2011 (has links)
Title: Graph coloring problems Author: Bernard Lidický Department: Department of Applied Mathematics Supervisor: doc. RNDr. Jiří Fiala, Ph.D. Abstract: As the title suggests, the central topic of this thesis is graph coloring. The thesis is divided into three parts where each part focuses on a different kind of coloring. The first part is about 6-critical graphs on surfaces and 6-critical graphs with small crossing number. We give a complete list of all 6-critical graphs on the Klein bottle and complete list of all 6-critical graphs with crossing number at most four. The second part is devoted to list coloring of planar graphs without short cycles. We give a proof that planar graphs without 3-,6-, and 7- cycles are 3-choosable and that planar graphs without triangles and some constraints on 4-cycles are also 3-choosable. In the last part, we focus on a recent concept called packing coloring. It is motivated by a frequency assignment problem where some frequencies must be used more sparsely that others. We improve bounds on the packing chromatic number of the infinite square and hexagonal lattices. Keywords: critical graphs, list coloring, packing coloring, planar graphs, short cycles
6

On some graph coloring problems

Casselgren, Carl Johan January 2011 (has links)
No description available.
7

Coloration, ensemble indépendant et structure de graphe / Coloring, stable set and structure of graphs

Pastor, Lucas 23 November 2017 (has links)
Cette thèse traite de la coloration de graphe, de la coloration par liste,d'ensembles indépendants de poids maximum et de la théorie structurelle des graphes.Dans un premier temps, nous fournissons un algorithme s'exécutant en temps polynomial pour le problème de la 4-coloration dans des sous-classes de graphe sans $P_6$. Ces algorithmes se basent sur une compréhension précise de la structure de ces classes de graphes, pour laquelle nous donnons une description complète.Deuxièmement, nous étudions une conjecture portant sur la coloration par liste et prouvons que pour tout graphe parfait sans griffe dont la taille de la plus grande clique est bornée par 4, le nombre chromatique est égal au nombre chromatique par liste. Ce résultat est obtenu en utilisant un théorème de décomposition des graphes parfaits sans griffe, une description structurelle des graphes de base de cette décomposition et le célèbre théorème de Galvin.Ensuite, en utilisant la description structurelle élaborée dans le premier chapitre et en renforçant certains aspects de celle-ci, nous fournissons un algorithme s'exécutant en temps polynomial pour le problème d'indépendant de poids maximum dans des sous-classes de graphe sans $P_6$ et sans $P_7$. Dans le dernier chapitre de ce manuscrit, nous infirmons une conjecture datant de 1999 de De Simone et K"orner sur les graphes normaux. Notre preuve est probabiliste et est obtenue en utilisant les graphes aléatoires. / This thesis deals with graph coloring, list-coloring, maximum weightstable set (shortened as MWSS) and structural graph theory.First, we provide polynomial-time algorithms for the 4-coloring problem insubclasses of $P_6$-free graphs. These algorithms rely on a preciseunderstanding of the structure of these classes of graphs for which we give afull description.Secondly, we study the list-coloring conjecture and prove that for anyclaw-free perfect graph with clique number bounded by 4, the chromatic numberand the choice number are equal. This result is obtained by using adecomposition theorem for claw-free perfect graphs, a structural description ofthe basic graphs of this decomposition and by using Galvin's famous theorem.Next by using the structural description given in the first chapter andstrengthening other aspects of this structure, we provide polynomial-timealgorithms for the MWSS problem in subclasses of $P_6$-free and $P_7$-freegraphs.In the last chapter of the manuscript, we disprove a conjecture of De Simoneand K"orner made in 1999 related to normal graphs. Our proof is probabilisticand is obtained by the use of random graphs.
8

Quelques problèmes de coloration du graphe / Some coloring problems of graphs

Xu, Renyu 27 May 2017 (has links)
Un k-coloriage total d'un graphe G est un coloriage de V(G)cup E(G) utilisant (1,2,…,k) couleurs tel qu'aucune paire d'éléments adjacents ou incidents ne reçoivent la même couleur. Le nombre chromatique total chi''(G) est le plus petit entier k tel que G admette un k-coloriage total. Dans le chapitre 2, nous étudions la coloration totale de graphe planaires et obtenons 3 résultats : (1) Soit G un graphe planaire avec pour degré maximum Deltageq8. Si toutes les paires de 6-cycles cordaux ne sont pas adjacentes dans G, alors chi''(G)=Delta+1. (2) Soit G un graphe planaire avec pour degré maximum Deltageq8. Si tout 7-cycle de G contient au plus deux cordes, alors chi''(G)=Delta+1. (3) Soit G un graphe planaire sans 5-cycles cordaux qui s'intersectent, c'est à dire tel que tout sommet ne soit incident qu'à au plus un seul 5-cycle cordal. Si Deltageq7, alors chi''(G)=Delta+1.Une relation L est appelé assignation pour un graphe G s'il met en relation chaque x à une liste de couleur. S'il est possible de colorier G tel que la couleur de chaque x soit présente dans la liste qu'il lui a été assignée, et qu'aucune paire de sommets adjacents n'aient la même couleur, alors on dit que G est L-coloriable. Un graphe G est k-selectionable si G est L-coloriable pour toute assignation L de G qui satisfait |L(v)geq k| pour tout x. Nous démontrons que si chaque 5-cycle de G n'est pas simultanément adjacent à des 3-cycles et des 4-cycles, alors G est 4-sélectionable. Dans le chapitre 3, nous prouvons que si aucun des 5-cycles de G n'est adjacent à un 4-cycles, alors chi'_l(G)=Delta et chi''_l(G)=Delta+1 si Delta(G)geq8, et chi'_l(G)leqDelta+1 et chi''_l(G)leqDelta+2 si Delta(G)geq6.Dans le chapitre 4, nous allons fournir une définition du coloriage total somme-des-voisins-distinguant, et passer en revue les progrgrave{e}s et conjecture concernant ce type de coloriage. Soit f(v) la somme des couleurs d'un sommet v et des toutes les arrêtes incidentes à v. Un k-coloriage total somme-des-voisins-distinguant de G est un k coloriage total de G tel que pour chaque arrête uvin E(G), f(u)eq f(v). Le plus petit k tel qu'on ai un tel coloriage sur G est appelé le nombre chromatique total somme-des-voisins-distinguant, noté chi''_{sum} (G). Nous avons démontré que si un graphe G avec degré maximum Delta(G) peut être embedded dans une surface Sigma de caractéristique eulérienne chi(Sigma)geq0, alors chi_{sum}^{''}(G)leq max{Delta(G)+2, 16}.Une forêt linéaire est un graphe pour lequel chaque composante connexe est une chemin. L'arboricité linéaire la(G) d'un graphe G tel que définie est le nombre minimum de forêts linéaires dans G, dont l'union est égale à V(G). Dans le chapitre 5, nous prouvons que si G est une graphe planaire tel que tout 7-cycle de G contienne au plus deux cordes, alors G est linéairementleft lceil frac{Delta+1}{2}ightceil-sélectionable si Delta(G)geq6, et G est linéairement left lceil frac{Delta}{2}ightceil-sélectionable si Delta(G)geq 11. / A k-total-coloring of a graph G is a coloring of V(G)cup E(G) using (1,2,…,k) colors such that no two adjacent or incident elements receive the same color.The total chromatic number chi''(G) is the smallest integer k such that G has a k-total-coloring. In chapter 2, we study total coloring of planar graphs and obtain three results: (1) Let G be a planar graph with maximum degree Deltageq8. If every two chordal 6-cycles are not adjacent in G, then chi''(G)=Delta+1. (2) Let G be a planar graph G with maximum degree Deltageq8. If any 7-cycle of G contains at most two chords, then chi''(G)=Delta+1. (3) Let G be a planar graph without intersecting chordal 5-cycles, that is, every vertex is incident with at most one chordal 5-cycle. If Deltageq7, then chi''(G)=Delta+1.A mapping L is said to be an assignment for a graph G if it assigns a list L(x) of colors to each xin V(G)cup E(G). If it is possible to color G so that every vertex gets a color from its list and no two adjacent vertices receive the same color, then we say that G is L-colorable. A graph G is k-choosable if G is an L-colorable for any assignment L for G satisfying |L(x)|geq k for every vertex xin V(G)cup E(G). We prove that if every 5-cycle of G is not simultaneously adjacent to 3-cycles and 4-cycles, then G is 4-choosable. In chapter 3, if every 5-cycles of G is not adjacent to 4-cycles, we prove that chi'_l(G)=Delta, chi''_l(G)=Delta+1 if Delta(G)geq8, and chi'_l(G)leqDelta+1, chi''_l(G)leqDelta+2 if Delta(G)geq6.In chapter 4, we will give the definition of neighbor sum distinguishing total coloring. Let f(v) denote the sum of the colors of a vertex v and the colors of all incident edges of v. A total k-neighbor sum distinguishing-coloring of G is a total k-coloring of G such that for each edge uvin E(G), f(u)eq f(v). The smallestnumber k is called the neighbor sum distinguishing total chromatic number, denoted by chi''_{sum} (G). Pilsniak and Wozniak conjectured that for any graph G with maximum degree Delta(G) holds that chi''_{sum} (G)leqDelta(G)+3. We prove for a graph G with maximum degree Delta(G) which can be embedded in a surface Sigma of Euler characteristic chi(Sigma)geq0, then chi_{sum}^{''}(G)leq max{Delta(G)+2, 16}.Lastly, we study the linear L-choosable arboricity of graph. A linear forest is a graph in which each component is a path. The linear arboricity la(G) of a graph G is the minimum number of linear forests in G, whose union is the set of all edges of G. A list assignment L to the edges of G is the assignment of a set L(e)subseteq N of colors to every edge e of G, where N is the set of positive integers. If G has a coloring varphi (e) such that varphi (e)in L(e) for every edge e and (V(G),varphi^{-1}(i)) is a linear forest for any iin C_{varphi}, where C_{varphi }=left { varphi (e)|ein E(G)ight }, then we say that G is linear L-colorable and varphi is a linear L-coloring of G. We say that G is linear k-choosable if it is linear L-colorable for every list assignment L satisfying |L(e)| geq k for all edges e. The list linear arboricity la_{list}(G) of a graph G is the minimum number k for which G is linear k-list colorable. It is obvious that la(G)leq la_{list}(G). In chapter 5, we prove that if G is a planar graph such that every 7-cycle of G contains at most two chords, then G is linear left lceil frac{Delta+1}{2}ightceil-choosable if Delta(G)geq6, and G is linear left lceil frac{Delta}{2}ightceil-choosable if Delta(G)geq 11.

Page generated in 0.088 seconds