• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 22
  • 18
  • 10
  • 9
  • 9
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 307
  • 307
  • 307
  • 79
  • 52
  • 51
  • 46
  • 40
  • 39
  • 39
  • 37
  • 35
  • 32
  • 32
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

State-of-Charge Estimations for Lead-Acid and Lithium-Ion Batteries

Chen, Yi-Ping 08 July 2007 (has links)
This thesis studies State-of-Charge (SOC) method for widely used lead-acid batteries and the most prospective lithium-ion batteries. First, the relationship between the battery capacity and the open-circuit-voltage under different charging/discharging currents is investigated based on the equivalent circuit. Experimental results indicate that the open-circuit-voltage of the lead-acid battery varies regularly with the charging/discharging current and the duration of time for the battery disconnected from the load. Accordingly, a dynamic open-circuit-voltage method in considerations the open-circuit-time and the previous operating current is capable of precisely estimating the battery capacity in a shorter time. As for the lithium-ion batteries, their charging/discharging characteristics reveal that the Coulomb/Ampere-Hour Counting method is capable of yielding accurate estimations. Finally, through the experiments that emulate practical operations, the SOC estimations of batteries are verified to demonstrate the effectiveness and accuracy of the proposed methods.
142

Theoretical Investigations on Nanoporpus Materials and Ionic Liquids for Energy Storage

Mani Biswas, Mousumi 2011 December 1900 (has links)
In the current context of rapidly depleting petroleum resources and growing environmental concerns, it is important to develop materials to harvest and store energy from renewable and sustainable sources. Hydrogen has the potential to be an alternative energy source, since it has higher energy content than petroleum. However, since hydrogen has very low volumetric energy density, hence it is important to design nano porous materials which can efficiently store large volumes of hydrogen gas by adsorption. In this regard carbon nanotube and Metal Organic Framework (MOFs) based materials are worth studying. Ionic liquids (IL) are potential electrolytes that can improve energy storage capacity and safety in Li ion batteries. Therefore it is important to understand IL's thermodynamic and transport properties, especially when it is in contact with electrode surface and mixed with Li salt, as happens in the battery application. This dissertation presents computation and simulation based studies on: 1. Hydrogen storage in carbon nanotube scaffold. 2. Mechanical property and stability of various nanoporous Metal Organic Frameworks. 3. Thermodynamic and transport properties of [BMIM][BF4] ionic liquid in bulk, in Li Salt mixture, on graphite surface and under nanoconfinement. In the first study, we report the effects of carbon nanotube diameter, tube chirality, tube spacer distance, tube functionalization and presence of Li on hydrogen sorption capacity and thermodynamics at different temperature and pressure. In the second one, we observe high pressure induced structural transformation of 6 isoreticular MOFs: IRMOF-1. IRMOF-3, IRMOF-6, IRMOF-8, IRMOF-10 and IRMOF-14, explore the deformation mechanism and effect of Hydrogen inside crystal lattice. In the third study, we observe the equilibrium thermodynamic and transport properties of [BMIM][BF4] ionic liquid. The temperature dependence of ion diffusion, conductivity, dielectric constant, dipole relaxation time and viscosity have been observed and found similar behavior to those of supercooled liquid. The ion diffusion on graphite surfaces and under nanoconfinement was found to be higher compared to those in bulk.
143

Vers des batteries lithium organiques innovantes mettant en jeu des polymères à base de Nméthylphénothiazines modifiées / Towards innovative organic lithium batteries involving modified nmethylphenothiazine-based polymers

Guilmin, Romain 04 February 2016 (has links)
La N-méthylphénothiazine (MPT) est une cible de choix pour développer des matériaux organiques redox performants pour électrodes positives de batterie lithium-ion. Ces matériaux dits organiques sont aujourd’hui une alternative crédible aux matériaux inorganiques, actuellement utilisés dans les accumulateurs, de par leurs coûts et toxicité moindres.C’est dans cette optique que des polymères redox contenant l’unité N-méthylphénothiazine ont été synthétisés et caractérisés. Leurs propriétés électrochimiques ont été étudiées en solution via l’utilisation de molécules modèles puis en cellule électrochimique à négative de lithium.Mais pourquoi la N-méthylphénothiazine ? Cette cible redox présente deux systèmes réversibles mais en l’état, seul le premier est exploitable. L’objectif de cette thèse a donc été de modifier chimiquement la molécule afin de moduler les valeurs de potentiels de ses deux systèmes et ainsi les rendre électrochimiquement actifs dans la fenêtre de stabilité des électrolytes de la technologie lithium, permettant de presque doubler la capacité théorique.Ces dérivés ont ensuite pu être polymérisés et testés électrochimiquement, des performances intéressantes ont été obtenues pour certains d’entre eux. Mais malgré l’utilisation de matériaux insolubles à l’état neutre, les cyclages galvanostatiques ont mis en évidence une dissolution des matériaux à l’état oxydé, du moins pour les polymères de plus faibles masses, induisant une diminution de la capacité. / The N-methylphenothiazine (MPT) is a prime target with the aim of developing innovative redox organic materials useful as positive electrode of lithium-ion battery. These organic materials are today a credible alternative to inorganic materials by their lower cost and toxicity.It is in this context that MPT-based redox polymers have been synthesized and characterized. Their electrochemical properties have been investigated in lithium cells to estimate their potential.But why the N-methylphenothiazine ? This redox target has two reversible systems but only the first is exploited. The project was therefore the chemical modification of the MPT molecule to modulate potential values of two systems. These chemical developments thus allow improving notably the MPT derivative theoretical capacities accessible in the electrochemical stability range of lithium-ion technology electrolyte.These derivatives were synthesized and tested in lithium cell. Some of them present interesting performances. But despite the use of insoluble materials at the neutral state, cell tests showed material dissolution in the oxidized state, which decreases significantly the obtained capacities.
144

Comportement électrochimique de matériaux à haut potentiel : LiCoPO4 et LiNi1/3Mn3/2O4, en électrodes couches minces ou composites. / Electrochemical behavior of high potential materials : LiCoPO4 and LiNi1/3Mn3/2O4 as thin films or composites electrodes

Dumaz, Philippe 07 December 2017 (has links)
L'utilisation de sources naturelles illimitées telles que l'énergie solaire, éolienne ou hydraulique est en plein essor. Cependant leurs productions énergétiques sont fortement liées aux conditions climatiques et sont donc intermittentes. Ces systèmes nécessitent donc d'être associés à du stockage d'énergie, afin de lisser la production avant injection sur le réseau. Pour toutes ces raisons, les batteries Li-ion doivent intégrer de nouveaux matériaux d'électrode permettant d'obtenir une grande puissance et une haute densité d'énergie, tout en conservant une durée de vie élevée et une sécurité d'utilisation.Dans ce contexte, notre travail a consisté à préparer des matériaux à hauts potentiels, le LiCoPO4 (LCP) et le LiNi0.5Mn1.5O4 (LNMO). Ces derniers s'inscrivent parfaitement dans le contexte de développement de matériaux à haute densité d'énergie puisqu'ils possèdent des potentiels d'oxydation de 4,8 et 4,7 V vs Li +/Li et des densités d'énergies massiques théoriques de 802 et 691 Wh.kg-1 par rapport au lithium, respectivement.Ces matériaux ont d'abord été synthétisés sous forme de couches minces afin d'obtenir des électrodes modèles pour étudier de manière fondamentale les propriétés de transport des matériaux et ses interactions en présence d'un électrolyte liquide notamment les phénomènes à l'interface électrode/électrolyte. La compréhension des matériaux acquise au cours de ce premier axe a permis de transposer et d'adapter ces techniques de caractérisation aux systèmes plus complexes que sont les électrodes composites.Les propriétés de ces matériaux vis-à-vis de l'insertion et la désinsertion du lithium ont ensuite été testées et caractérisées en cellules électrochimiques. De nombreux paramètres cinétiques et thermodynamiques ont été extrait grâce à plusieurs techniques électrochimiques telles que la titration intermittente (GITT), la spectroscopie d'impédance (PEIS et GEIS), le cyclage galvano-statique et les tests de puissance. Nous proposons d'ailleurs une méthode simple, à partir de ces tests de puissance, pour déterminer le coefficient de diffusion du lithium. Enfin, nous tentons de répondre à plusieurs questions qui demeurent en suspens concernant la cyclabilité et la perte de capacité de ces matériaux à haut potentiel au cours de cyclage long et nous proposons une technique très simple permettant d'améliorer de façon étonnamment efficace la cyclabilité d'électrodes composites de LNMO. / The use of unlimited natural sources such as solar, wind or hydraulic power is booming. However, their energy production is dependant of climatic conditions and is therefore intermittent. These systems are usually associated with energy storage, in order to smooth the production before injection on the network. For all these reasons, Li-ion batteries need to incorporate new electrode materials to achieve high power and high energy density while maintaining a long life and safe use.In this context, our work consisted in preparing high potential materials, LiCoPO4 (LCP) and LiNi0.5Mn1.5O4 (LNMO). The latter are perfectly integered in the context of development of materials with high energy density since they have an oxidation potential of 4.8 and 4.7 V vs Li + / Li and theoretical mass energy densities of 802 and 691 Wh.kg-1 over lithium, respectively.These materials were first synthesized in the form of thin thin films to obtain model electrodes to study the kinetics and thermodynamics properties of materials transport and interactions with the presence of a liquid electrolyte including phenomena at the electrode interface / electrolyte. The understanding acquired during this first axis allowed us to transpose and adapt these characterization techniques to more complex systems : composite electrodes.The properties of these materials with respect to lithium insertion and desinsertion have been tested and characterized in electrochemicals cells. Kinetic and thermodynamic parameters have been extracted using several electrochemical techniques such as intermittent titration (GITT), impedance spectroscopy (PEIS and GEIS), galvano-static cycling and power tests. We propose a simple method, based on power tests, to determine the diffusion coefficient of lithium. Finally, we attempt to answer several questions that remain unsolved about the capacity loss of high potential materials during long cycling, and we propose a very simple technique for improving the cycling of composites electrodes of LNMO.
145

Fire properties of fluorine-free electrolytes for lithium-ion batteries / Brandegenskaper för fluorfria elektrolyter för litiumjonbatterier

Lundin, Simon, Lundin, Linus January 2019 (has links)
Many countries including Sweden are planning to replace fossil fuel-based vehicles with electric vehicles. This is one of the main reasons that companies all over the world are investing more and more money in the development of lithium-ion batteries, for electric vehicles. There are several different risks with the conventional lithium-ion batteries including the high flammability of the electrolytes, which can lead to high heat release rate, risk of explosion and high toxicity in the form of hydrogen fluoride gas. The hydrogen fluoride is lethal even at low concentration. These potential risks are based on the structure of the flammable electrolytes inside the lithium-ion batteries. Because of that, there is a big interest in finding an electrolyte with similar battery performance and better fire properties as compared with the conventional electrolytes commercially available on the market.   The intent with this work is to investigate the fire properties of different halogen-free electrolytes. The two newly developed salts Li[MEA] & Li[MEEA] as well as the available salt Li[BOB] will be compared with the commercially used halogen-containing electrolyte based on lithium hexafluorophosphate (LiPF6) salt.   Physical and electrochemical properties of these electrolytes such as solubility in different organic solvents, density, viscosity, ionic conductivity and electrochemical window will be studied in the first step. The electrolytes showing the most promising electrochemical properties will then be further investigated regarding fire properties, heat release rate, flash point and toxicity. The electrolytes will be compared with the conventional electrolyte containing LiPF6.   Li[BOB] was not dissolved in the solvents with the strongest dissolving properties, therefore it was not further tested. The electrolytes that were tested regarding fire properties were Li[MEA] and Li[MEEA] with the organic solvents of ethylene carbonate and dimethyl carbonate. Ionic liquid was also added to Li[MEEA] to investigate how it affected the fire properties for the electrolyte.   When examine the heat release rate for the newly developed salts, as well as LiPF6, it was observed that the highest peaks were similar to each other. The combustion time for the electrolyte containing LiPF6 was noticeable shorter than for the other three electrolytes. This is likely due to the fluorine content in LiPF6. The electrolytes undergoing the cone calorimeter test in this work was not charged so therefore the peaks of the heat release rate may look different. For further studies, it could be of interest to construct a complete lithium-ion battery using these electrolytes to see how the battery cells and the electrolytes behave in different set of charges.   Another essential point, is the ignition time that showed varied times for the tests containing Li[MEEA] together with the organic solvents and with the added ionic liquid. This is an interesting result that probably can be explained by the homogeneity of the electrolyte. The homogeneity was only verified with the help of the human eye and therefore it may not be fully dissolved.   The flashpoint for the different mixtures of electrolytes showed values of interest where the electrolyte containing ionic liquid that showed the lowest flashpoint. This was unexpected concerning that these types of additives are common for improving the fire resistance capacity.   The key aspect discussed when analyzing the result from the FTIR spectroscopy was how the Li[MEA], Li[MEEA] and LiPF6 salts varied. The ones that did not have any fluorine in its structure resulted in production of carbon dioxide. However, the electrolyte containing fluorine resulted, as expected, in values of hydrogen fluorine and carbon dioxide but also other combustion products that was hard to determine.   These salts and electrolytes need to be further studied and tested to see if it is possible to use them in an actual lithium-ion battery. Besides further tests of the salts and ionic liquid tested in this work, it is important that the work with conventional and newly developed electrolytes aims for improvements in fire resistance as well as toxicity. / Många länder inklusive Sverige planerar att byta ut fordon som använder fossila bränslen mot elfordon. Detta är en av huvudanledningarna till att företag runt om i världen satsar mer och mer pengar på att utveckla litiumjonbatterier för elfordon. Litiumjonbatterier medför en del risker såsom hög värmeutveckling, brandfarliga vätskor, risk för explosion och toxiska gaser samt produceringen av vätefluorid. Redan vid låga koncentrationer är vätefluoriden dödlig. Riskerna baseras på strukturen av elektrolyten som finns i litiumjonbatteriet. På grund av dessa risker så är det intressant att utveckla en elektrolyt som har liknande batteriegenskaper men bättre brandegenskaper än de elektrolyter som finns och används idag.   I detta arbete har brandegenskaper för olika halogenfria elektrolyter testats. De två nyutvecklade salterna Li[MEA] & Li[MEEA] har tillsammans med det existerande saltet Li[BOB] jämförts med det kommersiella saltet litium hexafluorfosfat (LiPF6) som används till många elektrolyter i dagens litiumjonbatterier.   De fysiska och elektrokemiska egenskaperna såsom löslighet i organiska lösningsmedel, densitet, viskositet, jonkonduktiviet och elektrokemiskt fönster har testats för elektrolyterna i den första delen av arbetet. Elektrolyterna som uppvisade de mest lovande elektrokemiska egenskaper har även testats med avseende på brandegenskaperna, så som värmeutveckling, flampunkt och toxicitet. Elektrolyterna jämfördes mot den vanligt förekommande elektrolyten som innehåller litium hexafluorfosfat.   Saltet Li[BOB] löstes inte i lösningsmedel med bra lösningsegenskaper, vilket var anledningen till att det inte genomfördes ytterligare tester på den. Elektrolyterna som det genomfördes tester på avseende på brandegenskaper innehöll Li[MEA] och Li[MEEA] tillsammans med de organiska lösningsmedlen etylenekarbonat och dimetylkarbonat. För Li[MEEA] tillsattes det även jonvätska för att undersöka hur jonvätskan påverkar brandegenskaperna för elektrolyten.   När värmeutveckling för det nyutvecklade salterna och LiPF6 undersöktes, så uppvisade de liknande värden. Anmärkningsvärt var dock att förbränningstiden för LiPF6 varade under en kortare period i jämförelse med de tre andra elektrolyterna. En trolig orsak till detta är att LiPF6 innehåller fluor. Elektrolyterna som provades i konkalorimeter i detta arbete var ej laddade, vilket kan medföra att värmeutvecklingen kan se annorlunda ut vid ett laddat tillstånd. För framtida studier kan det vara intressant att konstruera ett komplett litiumjonbatteri, för att se hur elektrolyterna fungerar och påverkas, beroende på laddningsnivå.   Antändningstiden för Li[MEEA] blandat med de organiska lösningsmedlen tillsammans med jonvätska varierade mycket. Detta är ett intressant resultat, som förmodligen kan förklaras av homogeniteten på elektrolyten. Homogeniteten verifierades enbart okulärt, vilket inte säkerställer att jonvätskan har löst sig fullständigt i elektrolyten.   Resultat för flampunkten för det olika elektrolyterna var intressant, då elektrolyten som innehöll jonvätska visade på lägst flampunkt. Detta var oväntat då tillsatser som jonvätska brukar förbättra brandmotståndet.   Resultatet för FTIR-spektroskopin analyserades för att se hur Li[MEA], Li[MEEA] och LiPF6 skiljde sig åt. De elektrolyter som inte innehöll fluor, producerade bara koldioxid. Medans elektrolyten som innehöll fluor producerade, som väntat, vätefluorid och koldioxid, men även andra gaser som var svåranalyserade.   De framtagna elektrolyterna i detta arbete behöver studeras vidare och fler tester bör genomföras för att se om det finns en möjlighet att använda dem i faktiska litiumjonbatterier. Förutom att testa elektrolyterna i just detta arbete är det viktigt att forskningen kring brandegenskaper och toxiska egenskaper för elektrolyter fortsätter i framtiden.
146

Etude multi-échelle des mécanismes de (dé)lithiation et de dégradation d'électrodes à base de LiFePO¤ et silicium pour accumulateurs Li-ion / Multi-scale study of (de)lithiation and degradation mechanisms in LiFePO4 and silicon-based electrodes for Li-ion batteries

Robert, Donatien 29 November 2013 (has links)
Ces travaux ont permis d'approfondir les mécanismes de (dé)lithiation et de vieillissement dans des électrodes à base de silicium et de LiFePO4 pour accumulateurs Li-ion à partir d'observations multi-échelles. Des cartographies de phases, autant à l'échelle de la particule qu'à l'échelle de l'électrode, ont été menées par microscopie électronique mettant en évidence de fortes hétérogénéités. Pour le silicium, la mise en place de cartographie unique par STEM/EELS, s'appuyant sur une base de données des pertes faibles d'alliages sensibles à l'air et au faisceau d'électrons, a permis de comprendre les mécanismes de lithiation à l'échelle du nanomètre. L'étude de la première lithiation a montré des différences de mécanismes de réaction avec le lithium suivant deux facteurs : la taille des particules et les défauts au sein de celles-ci. Il a été observé une composition d'alliage LixSi plus faible pour les nanoparticules que pour les microparticules. Les défauts dus notamment au broyage constituent des sites préférentiels de lithiation. En vieillissement, les nanoparticules subissent de profonds changements structuraux et morphologiques, passant d'un état sphérique cristallin (50 nm) à un réseau de fils amorphe (5-10 nm d'épaisseur) contenu dans une matrice de SEI. Pour le LiFePO4, il a été clairement montré, par la combinaison de plusieurs techniques de microscopies électroniques (diffraction des électrons en précession, EFSD : Electron Forward Scattering Diffraction, EFTEM), que les particules de taille nanométrique (100-200 nm) étaient soit entièrement lithiées soit entièrement délithiées à l'équilibre thermodynamique. De fortes hétérogénéités ont été observées dans les électrodes fines comme dans les électrodes épaisses. A l'échelle des particules, l'analyse statistique de plus de 64000 particules a montré que les plus petites particules se délithient en premier. A l'échelle de l'agglomérat, les cartographies de phases ont révélé un mécanisme « cœur-coquille » : la réaction débute de la surface vers le centre des agglomérats. A l'échelle de l'électrode, le front de propagation de phase se déplace suivant des chemins préférentiels de plus grandes porosités de la surface de l'électrode vers le collecteur de courant. La conductivité ionique au sein de nos électrodes est le facteur limitant. / This work aimed at better understanding the (de)lithiation and aging mechanisms in LiFePO4 and silicon-based electrodes for Li-ion batteries from multiscale investigations. Phase mapping was performed by electron microscopy at the particle scale and at the electrode scale. This highlights some strong heterogeneities. The silicon study has shown some different lithium reaction mechanisms following two effects: particle size and crystalline defects. A smaller lithium amount in LixSi alloy was highlighted for the nanoparticles rather than for the microparticles. The defects mainly due to milling are preferential sites for the lithiation. In aging, the nanoparticles have undergone structural and morphological changes. The pristine crystalline spherical shape (50 nm) was transformed into an amorphous wire network (5-10 nm of thickness) contained in a SEI matrix. Thanks to a combination of electron microscopy techniques (precession electron diffraction, Electron Forward Scattering Diffraction, EFTEM), it was clearly shown that the LiFePO4 particles (100-200 nm) are either fully lithiated or fully delithiated at the thermodynamic equilibrium. Strong heterogeneities were observed in the thin and thick electrodes. At the nanoscale, the statistical analysis of 64000 particles unambiguously shows that the small particles delithiate in first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates, from the surface to the center of these agglomerates. At the electrode scale, the phase front would move following preferential paths into the higher porosity from the surface in contact with electrolyte toward the current collector. The electrode ionic conductivity is the limiting parameter.
147

Influência da densidade de corrente e da composição do eletrólito no desempenho eletroquímico de monocamada de grafeno em bateria de íons de lítio.

VIEIRA SEGUNDO, José Etimógenes Duarte. 11 May 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-05-11T22:51:17Z No. of bitstreams: 1 JOSÉ ETIMÓGENES DUARTE SEGUNDO – TESE (PPGEQ) 2017.pdf: 3042948 bytes, checksum: e0c377da642dbbf1ba0a1022f463d9de (MD5) / Made available in DSpace on 2018-05-11T22:51:17Z (GMT). No. of bitstreams: 1 JOSÉ ETIMÓGENES DUARTE SEGUNDO – TESE (PPGEQ) 2017.pdf: 3042948 bytes, checksum: e0c377da642dbbf1ba0a1022f463d9de (MD5) Previous issue date: 2018-08-31 / Para satisfazer aplicações industriais e o crescente consumo de combustíveis fósseis, têm-se realizado várias pesquisas sobre o desenvolvimento de materiais e tecnologias para o armazenamento de energia de forma sustentável e renovável. O grafeno é um material que despertou interesse de estudos recentes devido às suas excelentes propriedades físico-químicas, mecânicas, térmicas, elétricas e ópticas. Em uma bateria de íons de lítio, o grafeno supera as limitações de capacidade do grafite, comumente usado como material anódico. Neste trabalho, estudou-se o uso de monocamada de grafeno como ânodo em uma bateria de íons de lítio para verificar a influência da densidade de corrente e da composição do eletrólito no desempenho eletroquímico do material. A densidade de corrente foi aplicada em três níveis diferentes: 3, 5 e 10 μA/cm2. O eletrólito testado foi LiPF6 1M em etilenocarbonato/dietilcarbonato (50/50v) (EC-DEC), etilmetilcarbonato (EMC) ou propilenocarbonato (PC). As análises de microscopia de força atômica e Raman exibiram uma monocamada de grafeno uniforme sobre a superfície do substrato. Os espectros de impedância eletroquímica da célula descarregada foram analisados para investigar a cinética do processo de eletrodo nos diferentes eletrólitos. Os resultados mostraram um processo controlado pela transferência de carga, mas com grande contribuição da difusão de íons de lítio. Na caracterização eletroquímica, os melhores resultados foram obtidos para o eletrólito EC-DEC. A capacidade irreversível no 1º ciclo variou de 11,39 a 77,47%, em função da densidade de corrente aplicada, e maior capacidade de descarga foi de 21 575 mAh/g, para 3 μA/cm2. Com a aplicação dessa mesma densidade de corrente, a eficiência coulômbica média foi de 67,12% e a capacidade de descarga sofreu redução de 87,90%, ao longo de 20 ciclos. Os resultados obtidos confirmaram o grande potencial do grafeno para aplicação em sistemas de armazenamento de energia. / To satisfy industrial applications and the growing consumption of fossil fuels, researches have been performed on the development of materials and technologies for energy storage in a renewable and sustainable way. Graphene is a material that has interested recent studies due to its excellent physical-chemical, mechanical, thermal, electrical and optical properties. In a lithium-ion battery, graphene overcomes the capacity limitations of graphite, commonly used as anode material. In this work, monolayer graphene using as anode was studied in a lithium-ion battery to verify the influence of current density and electrolyte composition on the electrochemical performance of electrode material. Current density was applied in three different levels: 3, 5 and 10 μA/cm2. The electrolyte tested was LiPF6 1M in ethylene carbonate/diethyl carbonate (50/50v) (EC-DEC), ethyl methyl carbonate (EMC) or propylene carbonate (PC). AFM and Raman microscopy analysis exhibited a uniform monolayer graphene over substrate surface. The EIS spectra of discharged cell were analyzed to investigate the kinetics of electrode process in different electrolytes. Results showed a process controlled by charge transfer but with great contribution of lithium-ion diffusion in case of EC-DEC solvent. Irreversible capacity in the 1st cycle ranged from 11.39 to 77.47%, as function of applied current density, and the highest discharge capacity was 21,575 mAh/g, for 3 μA/cm2. With application of this current density value, the average coulombic efficiency was 67.12% and the discharge capacity was reduced by 87.90% over 20 cycles. Results confirmed the great potential of graphene for application in energy storage systems.
148

Synthesis And Electrochemical Characterization Of Silicon Clathrates As Anode Materials For Lithium Ion Batteries

January 2013 (has links)
abstract: Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown that capacities comparable to graphite can be obtained for up to 10 cycles and lower capacities can be obtained for up to 20 cycles. Unlike bulk silicon, the clathrate structure does not undergo excessive volume change upon lithium intercalation, and therefore, the crystal structure is morphologically stable over many cycles. X-ray diffraction of the clathrate after cycling showed that crystallinity is intact, indicating that the clathrate does not collapse during reversible intercalation with lithium ions. Electrochemical potential spectroscopy obtained from the cycling data showed that there is an absence of formation of lithium-silicide, which is the product of lithium alloying with diamond cubic silicon. Type II silicon clathrate, NaxSi136, consists of silicon making up the framework structure and sodium (guest) atoms occupying the interstitial spaces. These clathrates showed very high capacities during their first intercalation cycle, in the range of 3,500 mAh/g, but then deteriorated during subsequent cycles. X-ray diffraction after one cycle showed the absence of clathrate phase and the presence of lithium-silicide, indicating the disintegration of clathrate structure. This could explain the silicon-like cycling behavior of Type II clathrates. / Dissertation/Thesis / M.S. Materials Science and Engineering 2013
149

Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

January 2014 (has links)
abstract: In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ~100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2014
150

Formulation d'électrolytes haut potentiel pour la caractérisation d'électrodes positives innovantes : batteries lithium-ion pour le véhicule électrique / Formulation of high potential electrolytes to characterize innovating positive electrodes : Lithium-ion batteries for electrical vehicles

Nanini-Maury, Elise 21 February 2014 (has links)
La mise en œuvre de nouvelles formulations d’électrolytes adaptées à des électrodes positives à haut potentiel pour batterie lithium-ion est un défi majeur pour des systèmes à haute densité d’énergie. Afin d’obtenir une stabilité en oxydation supérieure à 5 V vs. Li+/Li, différents solvants (dinitriles, lactones, phosphates) ont été analysés. Nous avons montré par voltampérométrie cyclique que des électrolytes contenant du sébaconitrile sont stables jusqu’à 5,3 V vs. Li+/Li sur LiCoPO4. Toutefois, les résultats obtenus par impédance électrochimique et spectroscopie photoélectronique X ont révélé la présence d’une nouvelle interface à l’électrode positive issue de la dégradation de l’électrolyte. Bien que cette dégradation limite la cyclabilité, une optimisation de l’interface formée pourrait s’avérer un atout du point de vue de la sûreté du système grâce à une protection de l’électrode positive. / Implementation of new electrolyte formulations adapted to high potential positive electrodes for lithium-ion battery is a key challenge for high energy density systems. In order to obtain stability in oxidation greater than 5 V vs. Li+/Li, various solvents (dinitriles, lactones, phosphates) were analyzed. We have shown by cyclic voltammetry that electrolytes containing sebaconitrile are stable up to 5.3 V vs. Li+/Li on LiCoPO4. Nonetheless, the results obtained by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy revealed the presence of a new interface onto the positive electrode due to electrolyte degradation. Even though this degradation limits the cycle ability, optimization of the formed interface could be an asset in view of the system safety through the protection of the positive electrode.

Page generated in 0.0585 seconds