• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes

Oschatz, Martin, Lee, J. T., Kim, H., Borchardt, Lars, Cho, W. I., Ziegler, C., Kaskel, Stefan, Yushin, G., Nickel, Winfrid 03 December 2014 (has links) (PDF)
Polymer-based carbide-derived carbons (CDCs) with combined micro- and mesopores are prepared by an advantageous sacrificial templating approach using poly(methylmethacrylate) (PMMA) spheres as the pore forming material. Resulting CDCs reveal uniform pore size and pore shape with a specific surface area of 2434 m2 g−1 and a total pore volume as high as 2.64 cm3 g−1. The bimodal CDC material is a highly attractive host structure for the active material in lithium–sulfur (Li–S) battery cathodes. It facilitates the utilization of high molarity electrolytes and therefore the cells exhibit good rate performance and stability. The cathodes in the 5 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte show the highest discharge capacities (up to 1404 mA h gs−1) and capacity retention (72% after 50 cycles at C/5). The unique network structure of the carbon host enables uniform distribution of sulfur through the conductive media and at the same time it facilitates rapid access for the electrolyte to the active material.
2

Preparation and in-situ Spectroscopic Characterization of High-Energy Density Lithium-Sulphur Batteries

Grätz, Olga 16 June 2020 (has links)
This work was composed of two main parts. In a first step, a electrochemical cell was developed, which could allow the in-situ, in-operando analysis of the functioning battery. The processes taking place inside a running lithium-sulphur cell were then observed and identified with the help of Raman spectroscopy. In a second step, the performance of the cell was studied while using novel cathode materials, as well as modified commercial separators.
3

Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes

Oschatz, Martin, Lee, J. T., Kim, H., Borchardt, Lars, Cho, W. I., Ziegler, C., Kaskel, Stefan, Yushin, G., Nickel, Winfrid January 2014 (has links)
Polymer-based carbide-derived carbons (CDCs) with combined micro- and mesopores are prepared by an advantageous sacrificial templating approach using poly(methylmethacrylate) (PMMA) spheres as the pore forming material. Resulting CDCs reveal uniform pore size and pore shape with a specific surface area of 2434 m2 g−1 and a total pore volume as high as 2.64 cm3 g−1. The bimodal CDC material is a highly attractive host structure for the active material in lithium–sulfur (Li–S) battery cathodes. It facilitates the utilization of high molarity electrolytes and therefore the cells exhibit good rate performance and stability. The cathodes in the 5 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte show the highest discharge capacities (up to 1404 mA h gs−1) and capacity retention (72% after 50 cycles at C/5). The unique network structure of the carbon host enables uniform distribution of sulfur through the conductive media and at the same time it facilitates rapid access for the electrolyte to the active material.
4

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 12 December 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.
5

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 07 November 2016 (has links)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.

Page generated in 0.0782 seconds