• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 428
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 771
  • 771
  • 399
  • 335
  • 201
  • 133
  • 132
  • 94
  • 90
  • 78
  • 75
  • 72
  • 70
  • 69
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Výzkum interkalačních vlastností elektrodových materiálů založených na přírodním grafitu / Study of intercalation properties of electrode materials based on naturla graphite

Bílek, Lukáš January 2020 (has links)
This diploma thesis deals with the issue of lithium-ion accumulators. The thesis focuses on the negative electrode of lithium-ion accumulators made of natural graphite. The first part of this thesis points to the issue of electrochemical cells. In the theoretical part the thesis deals with the SEI layer, advantages, disadvantages, characteristics, operating principle and the use of lithium-ion accumulators. The practical part focuses on the electrochemical properties of negative electrode, especially the determination of the diffusion coefficient. Thesis also deals with electrochemical impedance spectroscopy (EIS) and its use in determining the equivalent replacement circuit and calculating the diffusion coefficient.
592

Studie materiálů pro Li-ion akumulátory pomocí elektronové mikroskopie / Study of materials for the Li-ion batteries by electron microscopy

Hujňák, Jan January 2020 (has links)
This work deals with problems of lithium-ion batteries. In the theoretical part are described electrochemical sources in general and their division. The main representatives of individual types of electrochemical sources are described in more detail. In the next part the thesis focuses specifically on lithium-ion accumulators, their history, electrochemical reactions taking place inside and materials of individual parts of which the accumulator consists. Next part focuses on electron microscopy and its division into scanning and transmission. Basic parts and the principle of operation are described. The practical part is focused on creating a small cell for examination under an electron microscope.
593

Deponované vrstvy na bázi olova a kobaltu pro Li-ion akumulátory / Deposited layers based on lead and cobalt for Li-ion batteries

Dorotík, David January 2021 (has links)
The diploma thesis deals with the principles of operation of lithium ion batteries and their properties when using deposited thin films. The thesis is mainly focused on the formation of thin films using the electrolytic method and subsequently testing the properties of the thin film in an electrochemical cell. The test criteria are mainly the value of the capacity of the prepared electrode and the impact of cycling on the electrode layer itself, where the deposited layer is assessed before cycling and after cycling on an SEM microscope..
594

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid-Electric, Distributed-Propulsion Regional Aircraft

Sergent, Aaronn January 2020 (has links)
No description available.
595

Výzkum elektrochemických a materiálových charakteristik nově vyvinutých vrstevnatých elektrodových materiálů pro lithno-iontové baterie / The research on electrochemical and material characteristics new developed layered electrode materials for lithium-ion batteries

Kratochvíl, Miroslav January 2009 (has links)
The diploma thesis deals with electrode materials for lithium-ions accumulators, concretely layered materials prepared via new methods. The main objective of this work is dealing with new procedures prepare electrodes of newly developed layered electrode materials and subsequently their measure. Another challenge was a theoretical analysis of newly developed layered electrode materials for positive and negative electrodes and their preparation of new procedures. In this work the detailed procedures for the preparation of individual electrodes, electrolytes and other issues associated with these preparations. There were describing batteries of general, primary and secondary lithium cells, fuel cells, Lithium-ion batteries, layered materials forming the electrodes and of course the history these cells. Practical work is focused on separate measurements layered electrode materials prepared by new processes and assessment of results for individual layered materials. In the practical part has been made that the newly prepared layered electrode materials offer higher capacity and voltage.
596

Nové materiály pro Li-iontové baterie pracující na principu konverze / New materials for Li-ion batteries with conversion mechanism

Petr, Jakub January 2014 (has links)
This thesis is interested in new materials for lithium – ion batteries. Two different samples were investigated, one intercalation and one conversion cathode material. The theoretical part is focused to the structure of cells, their advantages and disadvantages compared to other secondary batteries. Also other materials used in batteries are described. The practical part describes the preparation of cathode materials for subsequent testing by scanning elektron microscopy and thermogravimetric analysis. In conclusions two different materials were evaluated and compared with each other.
597

Materiály a komponenty pro lithno-iontové zdroje proudu / Materials and Components for Lithium-Ion Power Sources

Jirák, Tibor January 2011 (has links)
The dissertation thesis deals with electrode materials and components for lithium-ion power sources. The thesis works with two different kinds of materials, concretely nanostructured Li4Ti5O12 with spinel basis and LiCoO2 with layered structure. The electrochemical properties, structure and element analysis and utilization possibilities in electrochemical industry of new technological electrode material Li4Ti5O12 were investigated. The influences of admixtures and electrolytes on characteristics of electrode materials with aforesaid active masses were also examined. Low cost price, environmental safety and obtained results of electrochemical measurements and structure analysis refer to wide possibilities of usage electrode material Li4Ti5O12 in the field of electrochemistry.
598

Surface Active Sites: An Important Factor Affecting the Sensitivity of Carbon Anode Material towards Humidity

Fu, L. J., Zhang, H. P., Wu, Y. P., Wu, H. Q., Holze, R. 31 March 2009 (has links)
In this paper, we report that various kinds of active sites on graphite surface including active hydrophilic sites markedly affect the electrochemical performance of graphite anodes for lithium ion batteries under different humidity conditions. After depositing metals such as Ag and Cu by immersing and heat-treating, these active sites on the graphite surface were removed or covered and its electrochemical performance under the high humidity conditions was markedly improved. This suggests that lithium ion batteries can be assembled under less strict conditions and that it provides a valuable direction to lower the manufacturing cost for lithium ion batteries.
599

Nickel-Iron Oxide-based Nanomembranes as Anodes for Micro-Lithium-Ion Batteries

Liu, Lixiang 29 September 2020 (has links)
Development of microsized batteries plays an important role in the design of in-situ electrochemical investigation systems and portable/wearable electronics. This emerging field intimately correlates with the topics of rechargeable batteries, nanomaterials, on-chip microfabrication, flexibility with reliable mechanical properties etc. Among the various energy materials, conversion-type materials have been proposed as high-energy-density alternatives to traditional intercalation-based materials. However, these materials usually show complex reaction processes accompanied by multi-reaction intermediates, which poses a great challenge to understand the chemical mechanisms. Benefiting from the merits of microsized battery devices, we develop a novel strategy to investigate and then optimize the electrochemical performance of a specific conversion-type material: nickel-iron oxide (NFO). Subsequently, this kind of materials are employed for flexible minimized energy storage systems. Unlike traditional characterization methods based on slurry-coated electrodes, micro-platforms directly probe the intrinsic electrochemical properties of a single active material in real-time due to the elimination of other additives. In this thesis, we firstly design a micro-lithium batteries (MLBs), based on a single “Swiss-roll” microtubular nanomembrane electrode. This platform enables us to investigate the electrochemical mechanisms of electrode materials in lithium batteries by in-situ Raman spectroscopy, electrical conductivity measurements, and electrochemistry characterization. With this designed MLBs, we systematically studied NFO nanomembranes. Using in-situ Raman spectroscopy during the delithiation/lithiation process, we monitored the transition of the chemical component directly. Guided by our investigations of micro-batteries, composite NFO nanomembrane electrodes were fabricated and tested in coin cells, which showed an excellent rate performance: 440 mAh g-1 at a high rate of 20 A g-1 and a long-term stable cycling performance over 1600 cycles. One step further, a flexible energy storage micro-device is achieved using such optimized materials. We demonstrate a thin, lightweight, and flexible micro-full lithium-ion battery based on nickel-iron oxide with a high-rate performance and energy density that can be repeatedly bent to 180° without structural failure and performance loss. It delivers a stable output capacity of 140 mAh g-1 over 1000 charge/discharge cycles. Meanwhile, the excellent rate performance guarantees high energy output up to 255 W h kg-1 at a high power density of 12000 W kg-1 at the microscale.
600

Ventilering av brännbara gaser vid batteribränder

Gahm, Fredrik January 2021 (has links)
The use of lithium-ion batteries is something that is becoming more common in today’s society. They are found in a variety of electronic equipment such as mobile phones, laptops and tools. Several incidents have been reported due to lithium-ion batteries ending up in a state called thermal runaway. This in combination with the increasing demands for environmentally friendly and sustainable energy in the form of e.g. wind turbines and solar panels, can therefore lead to unforeseen consequences. Residual energy from wind or solar power can be stored in an energy storage, often a battery system of several interconnected lithium-ion batteries. In case of an incident in these storages where a large quantity of these batteries is located, there is a risk that an explosion will occur. This further leads to the interest if it’s possible to prevent an explosion with the help of mechanical ventilation.  The purpose of this report has been to investigate the reasons why these batteries are being able to cause an explosion, what gases are emitted in the event of a thermal runaway and how explosive they are. With the results given it’s possible to then perform calculations on ventilation capacity needed to maintain a non-explosive atmosphere. This was carried out through a literature study of currently available research combined with information from various authorities, hand calculations and calculations in Excel.  With the results of the literature study, it can be stated that the battery cell consisting of the cathode material lithium-nickel-manganese-cobalt oxide (NMC) is most reactive. The most common gases emitted from these cells during thermal runaway are hydrogen, carbon monoxide, carbon dioxide, methane, ethylene and ethane. These gases are also the most common gases during thermal runaway when the battery consists of a different cathode material, but the distribution may look different. All of these gases, with the exception of carbon dioxide, are flammable and can contribute to an explosive atmosphere.  Three different scenarios are developed where thermal runaway is assumed to take place at a battery cell inside battery storages of different sizes: two container-based energy storage and one battery storage for home use located in a garage space. In these respective scenarios, a certain number of cells are assumed to be in thermal runaway. The lower flammability limit for the ventilated gas mixture is determined to 8,53% based on the amount of emitted gas and the distribution of it due to thermal runaway. With the knowledge of the lower flammability limit of the emitted gas mixture, as well as other available data from each scenario, the desired capacity for ventilation is calculated at 0,23 m3/s for the two container-based battery storages and at 0,035 m3/s for the battery storage located in the garage space. If this capacity of the ventilation is present when thermal runaway occurs, it means that the concentration of combustible gases should remain below the lower flammability limit. It is worth noting that these calculations were performed to some extent based on assumptions and may therefore be judged more as approximate rather than exact.  The conclusions drawn by the performed calculations are that mechanical ventilation is a potential alternative to ensure that the atmosphere in a battery storage doesn’t become explosive if a thermal runaway occurs in the battery cells.

Page generated in 0.0468 seconds