• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 433
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 779
  • 779
  • 402
  • 340
  • 202
  • 135
  • 134
  • 96
  • 93
  • 78
  • 75
  • 73
  • 70
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Elaboration et caractérisation de couches minces amorphes dérivées d'oxydes de cobalt et de nickel (LiCoO2 et LiNiO2) utilisables comme électrode positive dans des microgénérateurs électrochimiques

Benqlilou-Moudden, Hanane 22 July 1996 (has links) (PDF)
Des couches minces amorphes dérivées d'oxydes de cobalt (LiCoO2) et de nickel (LiNiO2) ont été préparées par pulvérisation cathodique radiofréquence. La caractérisation de ces matériaux par analyses nucléaires (RBS et PIGE) a permis la détermination de leurs compositions. Les propriétés structurales et texturales ont été étudiées respectivement par diffraction des rayons X et par microscopie électronique a transmission (MET). Les nombres d'oxydation des atomes de cobalt et d'oxygene ont été déterminés par XPS dans les couches minces LixCoO2+y ainsi que lors de l'intercalation et la désintercalation des atomes de lithium dans ces dernières. Par ailleurs, les études par spectroscopie IR et XPS ont permis de préciser l'environnement des atomes de lithium et des atomes de cobalt dans ces matériaux. Les différentes couches minces ont été testées en tant qu'électrode positive dans des microgénerateurs électrochimiques au lithium.
752

EXPLORING MARKET FORCES FOR TRANSMISSION EXPANSION AND GRID STORAGE INTEGRATION : A technical-economic thesis about variation moderators for intermittent renewable power generation in the developed country of Sweden and the developing country of China

Eriksson, Pernilla, Sundell, Martin January 2015 (has links)
No description available.
753

Mechanische Aufbereitung der Feinfraktion zerkleinerter Lithium-Ionen-Batterien / Mechanical processing of the fine fraction of crushed lithium-ion batteries

Gellner, Martha 30 May 2018 (has links) (PDF)
Bei einem entwickelten Verfahren zur mechanischen Aufbereitung von Lithium-Ionen-Batterien (LIBs) aus Elektrofahrzeugen fallen zwei, hauptsächlich aus den Elektrodenbestandteilen bestehenden, Feinfraktionen (FF) an. Typischerweise erfolgt eine Rückgewinnung der enthaltenen Wertstoffe Co, Ni und Cu derzeit über eine kombinierte pyro- und hydrometallurgische Aufbereitung. Dabei dient der pyrometallurgische Schritt der Abtrennung von Stoffen, welche bei der hydrometallurgischen Aufbereitung störend wirken. Durch eine mechanische Aufbereitung der FF wurde alternativ zu dem pyrometallurgischen Schritt versucht, die in der FF enthaltenen Wertstoffe anzureichern sowie ebenfalls die Störstoffe für eine hydrometallurgische Aufbereitung abzutrennen. Dazu wurden verschiedene trockene Sortierprozesse herangezogen und auf ihre Eignung hin untersucht. Mit Hilfe der Ergebnisse wurde ein Verfahrensfließbild für die Aufbereitung der FF entworfen und testweise durchlaufen. Zusätzlich zu den Sortierversuchen wurden eine Materialcharakterisierung durchgeführt, die Aufschlussverhältnisse (visuelle Einschätzung, Bestimmung Aufschlussgrad) sowie die Aufschlusszerkleinerung der FF untersucht. Als Aufgabegut diente eine Co-, Ni-, Mn- haltige FF, welche nach der 1. Zerkleinerung und Klassierung im entworfenen Verfahrensfließbild zur Aufbereitung der LIBs aus Elektrofahrzeugen gewonnen wurde. Zur Anreicherung der Wertstoffe Co, Ni innerhalb des Aktivmaterials (AM) und Cu sowie zur Reduzierung der Störstoffgehalte von Al und Kohlenstoff in bestimmten Produkten haben sich die Siebklassierung, die Magnetscheidung, die Gegenstromsortierung sowie als nasser Dichtesortierprozess die Schwimm-Sink-Sortierung als geeignet herausgestellt. Als resultierendes technologisches Aufbereitungsverfahren haben sich aus den Ergebnissen eine Siebklassierung bei x = 200 µm und x = 800 µm mit einer nachgeschalteten Magnetscheidung oder Gegenstromsortierung für die Klasse 0,2…0,8 mm ergeben, woraus 4 Produkte resultieren. Beim testweisen Durchlaufen des resultierenden Verfahrensfließbildes hat sich zudem herausgestellt, dass in Abhängigkeit von der FF bzw. deren Kenngrößen auf die Magnetscheidung bzw. Gegenstromsortierung verzichtet werden kann. Insgesamt wird zur Aufwands- und Kostenminimierung eine Vereinheitlichung der aufzubereitenden FF empfohlen. Die Wirtschaftlichkeit des Verfahrens (inklusive Pyro- und Hydrometallurgie) wird stark durch die dynamische Entwicklung der Batterietechnologie, insbesondere der enthaltenen erlösbringenden Komponente Kobalt, und des Marktes (Verkaufsraten und Lebensdauer der LIBs) beeinflusst. Die notwendige kontinuierliche Anpassung des bestehenden Verfahrensfließbildes aufgrund der schnellen Weiterentwicklung chemischer LIB-Regime ist zudem nicht vermeidbar. Generelle Unterschiede in den FF (chemische Zusammensetzung, PGV) können auf verschiedene LIB-Typen (unterschiedliche AMs), deren Vorgeschichte (Alterungszustand, Lagerung, …) sowie die Zerkleinerungsbedingungen zurückgeführt werden. Mit Hilfe einer Bilanzierung wurden die Gehalte des gesamten AM in den FF zwischen c = 33,2 ± 3,4 Ma.-% und c = 54,9 ± 5,7 Ma.-% ermittelt. Mit Hilfe der untersuchten Methoden wurde in keinem Produkt der maximale Anreicherungsfaktor für die AMs erreicht, so dass lediglich eine Voranreicherung bezüglich dieser (und auch der anderen Komponenten) erzielt wurde. Betrachtungen zu den Verbindungs- und Aufschlussverhältnissen in der FF führten zu dem Ergebnis, dass sowohl die Anodenbeschichtung noch mit der Kupferfolie als auch die Kathodenbeschichtung mit der Aluminiumfolie im Verbund vorliegen können. Bezüglich der AMs wird ein Aufschluss im Partikelgrößenbereich größer der Primär- und Sekundärpartikelgröße (> 1 bis 20 µm) ausgeschlossen. Es konnte ein maximaler Aufschlussgrad von A = 37,9 % für eine der untersuchten Feinfraktionen bestimmt werden. Zur Zerkleinerung der Partikel in der Feinfraktion eignen sich eine Zerkleinerung in der einer Fliehkraftmühle bzw. mittels Ultraschallbeanspruchung.
754

High Capacity Porous Electrode Materials of Li-ion Batteries

Penki, Tirupathi Rao January 2014 (has links) (PDF)
Lithium-ion battery is attractive for various applications because of its high energy density. The performance of Li-ion battery is influenced by several properties of the electrode materials such as particle size, surface area, ionic and electronic conductivity, etc. Porosity is another important property of the electrode material, which influences the performance. Pores can allow the electrolyte to creep inside the particles and also facilitate volume expansion/contraction arising from intercalation/deintercalation of Li+ ions. Additionally, the rate capability and cycle-life can be enhanced. The following porous electrode materials are investigated. Poorly crystalline porous -MnO2 is synthesized by hydrothermal route from a neutral aqueous solution of KMnO4 at 180 oC and the reaction time of 24 h. On heating, there is a decrease in BET surface area and also a change in morphology from nanopetals to clusters of nanorods. As prepared MnO2 delivers a high discharge specific capacity of 275 mAh g-1 at a specific current of 40 mA g-1 (C/5 rate). Lithium rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template. It has a well crystalline structure with a broadly distributed mesoporosity but low surface area. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g-1 is obtained at a discharge current of 30 mA g-1. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g-1 at a discharge current density of 30 mA g-1. Solid solutions of Li2MnO3 and LiMO2 (M=Mn, Ni, Co, Fe and their composites) are more attractive positive electrode materials because of its high capacity >200 mAh g-1.The solid solutions are prepared by microemulsion and polymer template route, which results in porous products. All the solid solution samples exhibit high discharge capacities with high rate capability. Porous flower-like α-Fe2O3 nanostructures is synthesized by ethylene glycol mediated iron alkoxide as an intermediate and heated at different temperatures from 300 to 700 oC. The α-Fe2O3 samples possess porosity with high surface area and deliver discharge capacity values of 1063, 1168, 1183, 1152 and 968 mAh g-1 at a specific current of 50 mA g-1 when prepared at 300, 400, 500, 600 and 700 oC, respectively. Partially exfoliated and reduced graphene oxide (PE-RGO) is prepared by thermal exfoliation of graphite oxide (GO) under normal air atmosphere at 200-500 oC. Discharge capacity values of 771, 832, 1074 and 823 mAh g -1 are obtained with current density of 30 mA g-1 at 1st cycle for PE-RGO samples prepared at 200, 300, 400 and 500 oC, respectively. The electrochemical performance improves on increasing of exfoliation temperature, which is attributed to an increase in surface area. The high rate capability is attributed to porous nature of the material. Results of these studies are presented and discussed in the thesis.
755

Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 nanotubes as novel anode materials in lithium ion batteries

Madian, Mahmoud 30 January 2018 (has links) (PDF)
Developed rechargeable batteries are urgently required to make more efficient use of renewable energy sources to support our modern way of life. Among all battery types, lithium batteries have attracted the most attention because of the high energy density (both gravimetric and volumetric), long cycle life, reasonable production cost and the ease of manufacturing flexible designs. Indeed, electrode material characteristics need to be improved urgently to fulfil the requirements for high performance lithium ion batteries. TiO2-based anodes are highly promising materials for LIBs to replace carbon due to fast lithium insertion/extraction kinetics, environmentally-friendly behavior, low cost and low volume change (less than 4%) therewith, high structural stability as well as improved safety issues are obtained. Nevertheless, the low ionic and electric conductivity (≈ 10−12 S m−1) of TiO2 represent the main challenge. In short, the present work aims at developing, optimization and construction of novel anode materials for lithium ion batteries using materials that are stable, abundant and environmentally friendly. Herein, both of two-phase Ti80Co20 and single phase Ti-Sn alloys (with different Sn contents of 1 to 10 at.%) were used to fabricate highly ordered, vertically oriented and dimension-controlled 1D nanotubes of mixed transition metal oxides (TiO2-CoO and TiO2-SnO2) via a straight-forward anodic oxidation step in organic electrolytes containing NH4F. Surface morphology and current density for the initial nanotube formation are found to be dependent on the crystal structure of the alloy phases. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. The results reveal the successful formation of mixed TiO2-CoO and TiO2-SnO2 nanotubes under the selected voltage ranges. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at different current densities. The results revealed that TiO2-CoO nanotubes prepared at 60 V exhibited the highest areal capacity of ~ 600 µAh cm–2 (i.e. 315 mAh g–1) at a current density of 10 µA cm–2. At higher current densities TiO2-CoO nanotubes showed nearly doubled lithium ion intercalation and a coulombic efficiency of 96 % after 100 cycles compared to lower effective TiO2 nanotubes prepared under identical conditions. To further improve the electrochemical performance of the TiO2-CoO nanotubes, a novel ternary carbon nanotubes (CNTs)@TiO2-CoO nanotubes composite was fabricated by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2-CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2-CoO NTs without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity promoting a strongly favored lithium insertion into the TiO2-CoO NT framework, and hence results in high capacity and extremely reproducible high rate capability. On the other hand, the results demonstrate that TiO2-SnO2 nanotubes prepared at 40 V on a Ti-Sn alloy with 1 at.% Sn display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. The thesis is organized as follows: Chapter 1: General introduction, in which the common situation of energy demand, along with the importance of lithium ion batteries in renewable energy systems and portable devices are discussed. A brief introduction to TiO2-based anode in lithium ion batteries and the genera strategies for developing TiO2 anodes are also presented. The scope of this thesis as well as the main tasks are summarized. Chapter 2: The basic concepts of lithium ion batteries with an overview about their main components are discussed, including a brief information about the anode materials and the crystal structure of TiO2 anode. A detailed review for TiO2 nanomaterials for LIBs including the fabrication methods and the electrochemical performance of various TiO2 nanostructures (nanoparticles, nanorods, nanoneedles, nanowires and nanotubes) as well as porousTiO2 nanostructures is presented. The fabrication of TiO2 nanotubes by anodic oxidation, along with the growth mechanism are highlighted. The factors affecting the electrochemical performance of anodically fabricated pure TiO2, TiO2/carbon composites and TiO2-mixed with another metal oxide are reviewed. Chapter 3: In this chapter, the synthesis of TiO2-CoO, (CNTs)@TiO2-CoO and TiO2-SnO2 nanotubes, along with the characterization techniques and the electrochemical basics and concepts are discussed. Chapter 4: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-CoO nanotubes and ternary (CNTs)@TiO2/CoO nanotube composites are presented. Chapter 5: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of ternary (CNTs)@TiO2-CoO nanotube composites are explained. Chapter 6: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-SnO2 nanotubes are presented. Chapter 7: Summarizes the results presented in this work finishing with realistic conclusions, and highlights interesting work for the future. / Um die zur Aufrechterhaltung unserer modernen Lebensweise unabdingbaren erneuerbaren Energiequellen effizient nutzen zu können, werden hochentwickelte wiederaufladbare Batterien dringend benötigt. Lithium-Ionenbatterien gelten aufgrund ihrer hohen Energiedichte (sowohl gravimetrisch als auch volumetrisch), ihrer langen Lebensdauer, moderater Produktionskosten und aufgrund der Möglichkeit, vielfältige Konzepte einfach herstellen zu können, als vielversprechend. Dennoch müssen die Elektrodenmaterialien dringend verbessert werden, um den Ansprüchen an zukünftige hochentwickelte Lithium-Ionenbatterien gerecht zu werden. TiO2-basierte Anoden gelten aufgrund ihrer schnellen Lade- und Entladekinetik, ihres umweltfreundlichen Verhaltens und niedriger Kosten als aussichtsreiche Alternativen zu Kohlenstoffen. Durch die geringe Volumenänderung beim Lithiumeinbau (unter 4%) werden außerdem eine hohe strukturelle Stabilität und erhöhte Sicherheit gewährleistet. Die hauptsächlichen Herausforderungen stellen die niedrige ionische und elektrische Leitfähigkeit (≈ 10−12 S m−1) von TiO2 dar. Zusammengefasst liegt das Ziel der vorliegenden Arbeit in der Entwicklung, Optimierung und Herstellung neuartiger Anodenmaterialien für Lithium-Ionenbatterien unter Verwendung stabiler, verfügbarer und umweltfreundlicher Materialien. In dieser Arbeit wurden sowohl zweiphasiges Ti80Co20 und einphasige Ti-Sn-Legierungen (mit verschiedenen Sn-Gehalten zwischen 1 und 10 at-%) zur Herstellung hochgeordneter, vertikal orientierter eindimensionaler Nanoröhren aus gemischten Übergangsmetalloxiden (TiO2–CoO und TiO2–SnO2) mittels anodischer Oxidation in NH4F-haltigen organischen Elektrolyten genutzt. Dabei wurden Abhängigkeiten der Oberflächenmorphologie und der Stromdichte für die Bildung der Nanoröhren von der Kristallstruktur der zugrundeliegenden Legierung beobachtet. Vielfältige Methoden wie REM, EDXS, TEM, XPS und Ramanspektroskopie wurden genutzt, um die Nanoröhren zu charakterisieren. Die Ergebnisse zeigen, dass gemischte TiO2-CoO und TiO2-SnO2 Nanoröhren in den gewählten Spannungsfenstern erfolgreich gebildet werden konnten. Die so hergestellten Nanoröhren sind amorph und in ihren Dimensionen präzise durch die Wahl der Spannung einstellbar. Eine elektrochemische Beurteilung der Nanoröhren erfolgte durch Tests gegen eine Li/Li+-Elektrode bei veschiedenen Stromdichten. Die Resultate zeigen, dass TiO2-CoO-Nanoröhren, welche bei 60 V hergestellt wurden, die höchsten Flächenkapazitäten von ~ 600 µAh cm–2 (d.h. 315 mAh g–1) bei einer Stromdichte von 10 µA cm–2 aufweisen. Bei höheren Stromdichten zeigen TiO2-CoO-Nanoröhren nahezu verdoppelte Lithiuminterkalation und eine Coulomb-Effizienz von 96 % nach 100 Zyklen, verglichen mit weniger effektiven TiO2–Nanoröhren, welche unter identischen Bedingungen hergestellt wurden. Um die elektrochemischen Eigenschaften der TiO2-CoO-Nanoröhren weiter zu verbessern, wurde ein neuer Komposit aus Kohlenstoff-Nanoröhren und TiO2-CoO-Nanoröhren ((CNT)s@TiO2/CoO) durch eine zweistufige Synthese hergestellt. Die Herstellung beinhaltet zunächst die anodische Bildung geordneter TiO2/CoO-Nanoröhren, ausgehend von einer Ti-Co-Legierung, gefolgt von einem horizontalen Kohlenstoff-Nanoröhren-Wachstum auf dem Oxid mittels einer simplen Sprühpyrolyse. Die einzigartige 1D-Struktur einer solchen hybriden Nanostruktur mit eingebundenen CNTs zeigt deutlich erhöhte Flächenkapazitäten und Belastbarkeiten im Vergleich zu Nanoröhren aus TiO2 und TiO2/CoO-Nanoröhren ohne CNTs, die unter identischen Bedingungen getestet wurden. Die Ergebnisse zeigen, dass die CNTs ein hochleitfähiges Netzwerk bilden, welches die Diffusion von Lithium-Ionen und deren Einbau in die TiO2/CoO-Nanoröhren begünstigt und somit hohe Kapazitäten und reproduzierbare hohe Belastbarkeiten bewirkt. Außerdem zeigen die Resultate, dass TiO2-SnO2 Nanoröhren, welche bei 40 V auf einer Ti-Sn-Legierung mit 1 at.% Sn hergestellt wurden, im Mittel eine 1,4-fache Erhöhung der Flächenkapazität und eine exzellente Zyklenstabilität über mehr als 400 Zyklen, verglichen mit unter identischen Konditionen hergestellten und getesteten TiO2-Nanoröhren, zeigen. Die Arbeit ist wie folgt organisiert: Kapitel 1: Allgemeine Einführung, in der die Energienachfrage und die Bedeutung von Lithium-Ionenbatterien in erneuerbaren Energiesystemen und tragbaren Geräten diskutiert wird. Eine kurze Einleitung zu TiO2-basierten Anoden in Lithium-Ionenbatterien und allgemeine Strategien zur Entwicklung von TiO2-Anoden werden ebenfalls gezeigt. Das Ziel der Arbeit und hauptsächliche Aufgaben werden zusammengefasst. Kapitel 2: Das grundlegende Konzept der Lithium-Ionenbatterie mit einem Überblick über ihre Hauptkomponenten wird diskutiert. Dies beinhaltet auch eine kurze Darstellung der Anodenmaterialien und der Kristallstruktur von TiO2-Anoden. Eine detaillierte Übersicht über TiO2-Nanomaterialien für LIB, welche Herstellungsmethoden und die elektrochemische Performance verschiedener TiO2-Nanostrukturen (Nanopartikel, Nanostäbe, Nanonadeln, Nanodrähte und Nanoröhren) und poröser TiO2-Nanostrukturen beinhaltet, wird gezeigt. Die Bildung von TiO2-Nanoröhren durch anodische Oxidation und der Wachstumsmechanismus werden hervorgehoben. Faktoren, welche die elektrochemische Performance anodisch hergestellter TiO2-Materialien, TiO2/Kohlenstoff-Komposite und TiO2 als Gemisch mit anderen Metalloxiden beeinflussen, werden diskutiert. Kapitel 3: In diesem Kapitel werden die Synthese von TiO2-CoO, (CNTs)@TiO2/CoO und TiO2-SnO2-Nanoröhren, die Charakterisierungsmethoden, elektrochemische Grundlagen und Konzepte diskutiert. Kapitel 4: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der TiO2-CoO- Nanoröhren und der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden gezeigt. Kapitel 5: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden diskutiert. Kapitel 6: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance von TiO2-SnO2-Nanoröhren werden gezeigt. Kapitel 7: Eine Zusammenfassung der Resultate, die in dieser Arbeit gezeigt wurden und Schlussfolgerungen, sowie interessante Ansatzpunkte für zukünftige Arbeiten werden präsentiert.
756

Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries

Huang, Yanshan, Wu, Dongqing, Dianat, Arezoo, Bobeth, Manferd, Huang, Tao, Mai, Yiyong, Zhang, Fan, Cuniberti, Gianaurelio, Feng, Xinliang 17 July 2017 (has links) (PDF)
Hierarchically porous nitrogen-doped graphene frameworks (N-GFs) are fabricated through the ice-templating of GO with polyethylenimine and the thermal treatment of the resultant hybrids. As cathode materials in lithium ion batteries (LIBs), the obtained N-GFs exhibit an outstanding specific capacity of 379 mA h g−1 at 0.5 A g−1 for 2500 cycles. Even at an ultrahigh current density of 5 A g−1, the N-GFs maintain a capacity of 94 mA h g−1, superior to that of most reported LIB cathode materials. The experimental results and quantum mechanics calculations suggest that pyridinic-like N and pyridinic N-oxide in graphene are responsible for the excellent cathodic performance of the bipolar N-GFs by providing fast surface faradaic reactions with both p- and n-doped states.
757

Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries

Huang, Yanshan, Wu, Dongqing, Dianat, Arezoo, Bobeth, Manferd, Huang, Tao, Mai, Yiyong, Zhang, Fan, Cuniberti, Gianaurelio, Feng, Xinliang 17 July 2017 (has links)
Hierarchically porous nitrogen-doped graphene frameworks (N-GFs) are fabricated through the ice-templating of GO with polyethylenimine and the thermal treatment of the resultant hybrids. As cathode materials in lithium ion batteries (LIBs), the obtained N-GFs exhibit an outstanding specific capacity of 379 mA h g−1 at 0.5 A g−1 for 2500 cycles. Even at an ultrahigh current density of 5 A g−1, the N-GFs maintain a capacity of 94 mA h g−1, superior to that of most reported LIB cathode materials. The experimental results and quantum mechanics calculations suggest that pyridinic-like N and pyridinic N-oxide in graphene are responsible for the excellent cathodic performance of the bipolar N-GFs by providing fast surface faradaic reactions with both p- and n-doped states.
758

Studium elektrodových materiálů pro Li-Ion akumulátory pomocí elektronové mikroskopie / Study of the electrode materials for Li-Ion accumulators by electron microscopy

Kaplenko, Oleksii January 2018 (has links)
The aim of this work is to describe the influence of temperature on the structure and chemical composition of electrode materials for Li-ion accumulators. Theoretical part of this thesis contains described terminology and general issues of batteries and their division. Every kind of battery is provided with a closer description of a specific battery type. A separate chapter is dedicated to lithium cells, mainly Li-ion batteries. Considering various composition of Li-ion batteries, the next subchapters deeply analyzes the most used cathode (with an emphasis on the LiFePO4, LiMn1/3Ni1/3Co1/3O2) and anode materials (with an emphasis on the Li4Ti5O12). The next chapters describe the used analytical methods: electron microscopy, energy dispersion spectroscopy and thermomechanical analysis. The practical part is devoted to the description of the individual experiments and the achieved results.
759

Layered transition metal sulfide- based negative electrode materials for lithium and sodium ion batteries and their mechanistic studies

Gao, Suning 21 September 2020 (has links)
The environmental concerns over the use of fossil fuels, and their resource constraints, as well as energy security concerns, have spurred great interest in generating electric energy from renewable sources. Solar and wind energy are abundant and potentially readily available. However, the generation of sustainable energies is generally intermittent and these energies have geographical limits which are relative to current large-scale energy generation facilities. To smooth out the intermittency of renewable energy production, low-cost electrical energy storage (EES) devices are becoming highly necessary. Among these EES technologies, lithium ion batteries are one of the most promising EES devices in terms of the characteristics of high gravimetric, volumetric energy density and environmentally friendly compared to lead-acid batteries and Ni-Cd batteries. Other advantages of Li-ion batteries are the ability of being recharged hundreds of times and high stability. Moreover, the dramatically growing market share of hybrid electrical and electrical vehicles in automobiles has motivated the development of high energy and power density LIBs with high mass loading. However, there are still several remaining challenges in LIBs for their further application in grid-scale ESSs. One of the global issues to date is the high costs including the cost of raw materials such as lithium and cobalt, production, machining, and transportation, etc. In addition, the increasing energy demand thereby leads to the pressures on the resource supply chains and thus increasing the cost of LIBs. Therefore, it is urgent to find a complementary or alternative EES device in a short term to satisfy the growing energy demand. Under the background of fast development of LIBs technology as well as the establishment of Li chemistry fundamentals in the last 40 years, rechargeable battery systems utilizing Na element have been extensively studied to develop less expensive and more sustainable ESSs. The sodium resource is abundantly existed in the planet. According to the periodic table, sodium is the most possible alternative to lithium, because it has the similar chemical and physical properties towards to lithium. As a consequence, the established fundamentals in LIBs can be reasonably analogized to SIBs. Moreover, Sodium is readily available from various sources-foods that contain sodium naturally, foods containing salt and other sodium-containing ingredients. Therefore, The study of SIBs technology and sodium chemistry are gaining increasing interests and attentions both in the scientific researchers and battery industry. However, theoretically speaking, the energy density of SIBs is lower than that of LIBs by using same electrode materials because sodium is more than 3 times heavier than Li as well as the standard electrode potential of Na (-2.71 V) is higher than Li (-3.04 V). Therefore, SIBs are not thought as an ideal candidate to substitute LIBs in the fields of small or middle-size portable devices, but are more favorable in a large grid support where the operation cost is the primary choice. Negative electrode is important component in a single cell. Exploring negative electrode materials with high electrochemical performance in LIBs and SIBs is indeed required for fulfilling the spreading energy demand. Among various negative electrode materials, layered transition metal sulfides (MSs) are reckoned as a promising class with high theoretical specific capacity and power capability due to their intrinsically layered structure which is beneficial to the diffusion of Li+ and Na+ . However, layered transition metal sulfides are suffering from intrinsically poor electrical conductivity, volume changes, high irreversibility and sluggish kinetics during Li+ /Na+ storage process. To address these issues, numerous strategies are applied to explore high performance LIBs and SIBs negative electrode materials in this PHD thesis. / Die ökologischen Bedenken hinsichtlich der Nutzung fossiler Brennstoffe und deren Ressourcenbeschränkungen sowie Bedenken hinsichtlich der Energiesicherheit haben großes Interesse an der Erzeugung elektrischer Energie aus erneuerbaren Quellen geweckt. Sonnen- und Windenergie sind im Überfluss vorhanden und potenziell leicht verfügbar. Die Erzeugung nachhaltiger Energien ist jedoch in der Regel intermittierend, und diese Energien haben geographische Grenzen, die im Vergleich zu den derzeitigen großen Energieerzeugungsanlagen relativ begrenzt sind. Um die Unterbrechungen in der Produktion erneuerbarer Energien auszugleichen, werden kostengünstige elektrische Energiespeicher (EES) dringend notwendig. Unter diesen EES-Technologien sind Lithium-Ionen-Batterien eines der vielversprechendsten EES-Geräte hinsichtlich der Eigenschaften einer hohen gravimetrischen, volumetrischen Energiedichte und umweltfreundlich im Vergleich zu Blei-Säure-Batterien und Ni-Cd-Batterien. Weitere Vorteile von Lithium-Ionen-Batterien sind die Fähigkeit, hunderte Male wieder aufgeladen werden zu können, und die hohe Stabilität. Darüber hinaus hat der dramatisch wachsende Marktanteil von Hybrid- und Elektrofahrzeugen in Automobilen die Entwicklung von LIBs mit hoher Energie- und Leistungsdichte und hoher Massenbelastung motiviert. Es gibt jedoch noch einige Herausforderungen in den LIBs, die für die weitere Anwendung in den ESSs im Rastermaßstab erforderlich sind. Eine der bisherigen globalen Fragen sind die Gesamtkosten einschließlich der Kosten für Rohstoffe wie Lithium und Kobalt, Produktion, Bearbeitung und Transport usw. Darüber hinaus führt die steigende Energienachfrage dadurch zu einem Druck auf die Ressourcenversorgungsketten und damit zu einer Verteuerung der LIBs. Daher ist es dringend erforderlich, kurzfristig eine ergänzende und alternative EES-Technologie zu finden, um den wachsenden Energiebedarf zu decken. Vor dem Hintergrund der schnellen Entwicklung der LIBs-Technologie sowie der Etablierung der Grundlagen der Li-Chemie in den letzten 40 Jahren wurden wiederaufladbare Batteriesysteme, die das Na-Element verwenden, umfassend untersucht, um kostengünstigere und nachhaltigere ESSs zu entwickeln. Die Natriumressource ist auf der Erde im Überfluss vorhanden. Nach dem Periodensystem ist Natrium die möglichste Alternative, da es die ähnlichen chemischen und physikalischen Eigenschaften von Lithium hat. Folglich lassen sich die etablierten Grundlagen der LIBs in vernünftiger Weise mit denen der SIBs vergleichen. Darüber hinaus ist Natrium aus verschiedenen Quellen leicht erhältlich - aus Lebensmitteln, die von Natur aus Natrium enthalten, aus Lebensmitteln, die Salz und andere natriumhaltige Zutaten enthalten. Daher gewinnt das Studium der SIBs-Technologie und Natriumchemie sowohl in der wissenschaftlichen Forschung als auch in der Batterieindustrie zunehmend an Interesse und Aufmerksamkeit. Theoretisch gesehen ist jedoch die Energiedichte von SIBs bei Verwendung der gleichen Elektrodenmaterialien niedriger als die von LIBs, da Natrium mehr als dreimal schwerer als Li ist und das Standardelektrodenpotential von Na (-2,71 V) höher als Li (-3,04 V) ist. Daher werden SIBs nicht als idealer Kandidat für den Ersatz von LIBs im Bereich kleiner oder mittelgroßer tragbarer Geräte angesehen, sondern sie sind günstiger bei einer großen Netzunterstützung, bei der die Betriebskosten die primäre Wahl sind. Die negative Elektrode ist ein notwendiger und wichtiger Teil in einer einzelnen Zelle. In der Tat ist es zur Erfüllung des sich ausbreitenden Energiebedarfs erforderlich, negative Elektroden-Materialien mit hoher elektrochemischer Leistung in LIBs und SIBs zu untersuchen. Unter den verschiedenen Materialien für negative Elektroden gelten geschichtete Übergangsmetallsulfide (MS) als eine vielversprechende Klasse mit hoher theoretischer spezifischer Kapazität und Leistungskapazität aufgrund ihrer intrinsisch geschichteten Struktur, die der Diffusion von Li+ und Na+ förderlich ist. Allerdings leiden schichtförmige Übergangsmetallsulfide unter inhärent schlechter elektrischer Leitfähigkeit, Volumenänderungen, hoher Irreversibilität und träger Kinetik während des Li+ /Na+ -Speicherprozesses. Um diese Probleme anzugehen, werden in dieser Doktorarbeit zahlreiche Strategien zur Untersuchung von Hochleistungs-LIBs und SIBs für negative Elektrodenmaterialien angewandt.
760

Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 nanotubes as novel anode materials in lithium ion batteries

Madian, Mahmoud 18 December 2017 (has links)
Developed rechargeable batteries are urgently required to make more efficient use of renewable energy sources to support our modern way of life. Among all battery types, lithium batteries have attracted the most attention because of the high energy density (both gravimetric and volumetric), long cycle life, reasonable production cost and the ease of manufacturing flexible designs. Indeed, electrode material characteristics need to be improved urgently to fulfil the requirements for high performance lithium ion batteries. TiO2-based anodes are highly promising materials for LIBs to replace carbon due to fast lithium insertion/extraction kinetics, environmentally-friendly behavior, low cost and low volume change (less than 4%) therewith, high structural stability as well as improved safety issues are obtained. Nevertheless, the low ionic and electric conductivity (≈ 10−12 S m−1) of TiO2 represent the main challenge. In short, the present work aims at developing, optimization and construction of novel anode materials for lithium ion batteries using materials that are stable, abundant and environmentally friendly. Herein, both of two-phase Ti80Co20 and single phase Ti-Sn alloys (with different Sn contents of 1 to 10 at.%) were used to fabricate highly ordered, vertically oriented and dimension-controlled 1D nanotubes of mixed transition metal oxides (TiO2-CoO and TiO2-SnO2) via a straight-forward anodic oxidation step in organic electrolytes containing NH4F. Surface morphology and current density for the initial nanotube formation are found to be dependent on the crystal structure of the alloy phases. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. The results reveal the successful formation of mixed TiO2-CoO and TiO2-SnO2 nanotubes under the selected voltage ranges. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at different current densities. The results revealed that TiO2-CoO nanotubes prepared at 60 V exhibited the highest areal capacity of ~ 600 µAh cm–2 (i.e. 315 mAh g–1) at a current density of 10 µA cm–2. At higher current densities TiO2-CoO nanotubes showed nearly doubled lithium ion intercalation and a coulombic efficiency of 96 % after 100 cycles compared to lower effective TiO2 nanotubes prepared under identical conditions. To further improve the electrochemical performance of the TiO2-CoO nanotubes, a novel ternary carbon nanotubes (CNTs)@TiO2-CoO nanotubes composite was fabricated by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2-CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2-CoO NTs without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity promoting a strongly favored lithium insertion into the TiO2-CoO NT framework, and hence results in high capacity and extremely reproducible high rate capability. On the other hand, the results demonstrate that TiO2-SnO2 nanotubes prepared at 40 V on a Ti-Sn alloy with 1 at.% Sn display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. The thesis is organized as follows: Chapter 1: General introduction, in which the common situation of energy demand, along with the importance of lithium ion batteries in renewable energy systems and portable devices are discussed. A brief introduction to TiO2-based anode in lithium ion batteries and the genera strategies for developing TiO2 anodes are also presented. The scope of this thesis as well as the main tasks are summarized. Chapter 2: The basic concepts of lithium ion batteries with an overview about their main components are discussed, including a brief information about the anode materials and the crystal structure of TiO2 anode. A detailed review for TiO2 nanomaterials for LIBs including the fabrication methods and the electrochemical performance of various TiO2 nanostructures (nanoparticles, nanorods, nanoneedles, nanowires and nanotubes) as well as porousTiO2 nanostructures is presented. The fabrication of TiO2 nanotubes by anodic oxidation, along with the growth mechanism are highlighted. The factors affecting the electrochemical performance of anodically fabricated pure TiO2, TiO2/carbon composites and TiO2-mixed with another metal oxide are reviewed. Chapter 3: In this chapter, the synthesis of TiO2-CoO, (CNTs)@TiO2-CoO and TiO2-SnO2 nanotubes, along with the characterization techniques and the electrochemical basics and concepts are discussed. Chapter 4: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-CoO nanotubes and ternary (CNTs)@TiO2/CoO nanotube composites are presented. Chapter 5: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of ternary (CNTs)@TiO2-CoO nanotube composites are explained. Chapter 6: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-SnO2 nanotubes are presented. Chapter 7: Summarizes the results presented in this work finishing with realistic conclusions, and highlights interesting work for the future.:1. Introduction and scope of the thesis 15 1.1 Batteries for renewable energy systems and portable devices 15 1.2 TiO2-based anodes in lithium ion batteries 17 1.3 Strategies for developing TiO2 anodes 17 1.4 Scope of work 19 1.5 Tasks 20 2. Basics and literature review 23 2.1 Lithium ion battery system 23 2.2 Anode materials 26 2.3 Crystal structure of TiO2 28 2.4 TiO2 nanomaterials for LIBs 30 2.4.1 TiO2 nanoparticles 30 2.4.2 TiO2 nanoneedles 36 2.4.3 Porous TiO2 nanostructures 39 2.5 TiO2 nanotubes prepared by electrochemical anodization 44 2.6 The mechanism of nanotube formation by anodic oxidation 47 2.7 Anodically fabricated TiO2 nanotubes as anodes in LIBs 49 2.7.1 Anodization electrolyte 50 2.7.2 Amorphous and crystalline TiO2 anodes 50 2.7.3 Influence of the nnealing atmospheres of TiO2 52 2.7.4 Free-standing TiO2 nanotube membranes 54 2.7.5 TiO2 nanotubes/carbon composites 55 2.7.6 Mixed oxide nanotubes 55 3. Materials and methods 61 3.1 Methodology 61 3.1.1 Synthesis of TiO2-CoO and TiO2 nanotubes 61 3.1.2 Synthesis of CNTs@TiO2-CoO NT composite 62 3.1.3 Synthesis of TiO2-SnO2 and TiO2 nanotubes 63 3.2 Characterization techniques 64 3.2.1 X-ray diffraction (XRD 64 3.2.2 Scanning electron microscopy (SEM 65 3.2.3 Energy-dispersive X-ray spectroscopy (EDXS 65 3.2.4 Transmission electron spectroscopy (TEM 66 3.2.5 X-ray photoelectron spectroscopy (XPS 66 3.2.6 Raman spectroscopy 67 3.2.7 Nitrogen sorption isotherms 67 3.2.8 Inductively coupled plasma optical emission spectroscopy (ICP–OES 68 3.3 Basic definitions and electrochemical concepts 68 3.3.1 Faraday’s law 68 3.3.2 Capacity 69 3.3.3 Discharging 69 3.3.4 Charging 69 3.4 Electrochemical techniques 70 3.4.1 Cyclic voltammetry 70 3.4.2 Galvanostatic discharging/charging cycling 70 3.4.3 Electrochemical impedance spectroscopy (EIS 71 3.5 Electrode preparation and measurement conditions 71 3.5.1 TiO2-CoO nanotube electrodes 71 3.5.2 CNTs@TiO2 and CNTs@TiO2/CoO NTs electrodes 72 3.5.3 TiO2-SnO2 nanotube electrodes 73 4. TiO2-CoO as anodes in lithium ion batteries 75 4.1 Introduction 76 4.2 Characterization 76 4.2.1 Phase identification of as cast Ti-Co alloy 76 4.2.2 Time-current density relationship 79 4.2.3 Morphology of the fabricated TiO2-CoO nanotubes 81 4.2.4 Phase identification of the fabricated TiO2-CoO nanotubes 85 4.2.5 Specific surface area of the fabricated TiO2-CoO nanotubes 87 4.2.6 Chemical state in the grown TiO2-CoO nanotubes 89 4.2.7 Raman spectroscopy of TiO2-CoO nanotubes 91 4.3 Electrochemical testing of TiO2-CoO electrodes 92 4.3.1 Cyclic voltammetry 92 4.3.2 Galvanostatic cycling with potential limitation 93 4.3.3 Electrochemical impedance spectroscopy (EIS) 97 4.3.4 Structural stability TiO2-CoO anodes over cycling 98 4.4 Summary of chapter 4 99 5. Ternary CNTs@TiO2-CoO nanotube composites: improved anode materials for LIBs 101 5.1 Introduction 102 5.2 Characterization 103 5.2.1 Morphology and Raman analysis of the fabricated CNTs@TiO2-CoO NTs 103 5.2.2 XRD analysis of the fabricated TiO2-CoO NTs before and after CNTs coating 106 5.3 Electrochemical properties 107 5.3.1 Cyclic voltammetry 107 5.3.2 Galvanostatic cycling with potential limitation 109 5.3.2 Electrochemical impedance spectroscopy (EIS 112 5.4 Summary of chapter 5 114 6. TiO2-SnO2 nanotubes as anodes in lithium ion batteries 115 6.1 Introduction 116 6.2 Characterization 117 6.2.1 ICP-OES analysis of the as-cast Ti-Sn alloys 117 6.2.2 SEM analysis of the as-cast Ti-Sn alloys 117 6.2.3 Phase analysis of the as-cast Ti-Sn alloys 118 6.2.4 Morphology of the fabricated TiO2-SnO2 nanotubes 121 6.2.5 XPS investigation of the grown TiO2-SnO2 nanotubes 127 6.2.6 Raman spectroscopy of TiO2-SnO2 nanotubes 129 6.3 Electrochemical Testing 130 6.3.1 Cyclic voltammetry 130 6.3.2 Galvanostatic cycling with potential limitation132 6.3.3 Specific surface area of the fabricated TiO2-SnO2 nanotubes135 6.3.4 Electrochemical impedance spectroscopy (EIS) and rate performance tests of the fabricated TiO2-SnO2 nanotubes 137 6.4 Summary of chapter 6140 7. Summary and outlook 141 7.1 Summary 141 7.2 Outlook 143 Appendix 145 Bibliography 157 List of figures 183 Glossary 191 Publications 193 Curriculum vitae 195 Acknowledgment 199 Declaration 201 / Um die zur Aufrechterhaltung unserer modernen Lebensweise unabdingbaren erneuerbaren Energiequellen effizient nutzen zu können, werden hochentwickelte wiederaufladbare Batterien dringend benötigt. Lithium-Ionenbatterien gelten aufgrund ihrer hohen Energiedichte (sowohl gravimetrisch als auch volumetrisch), ihrer langen Lebensdauer, moderater Produktionskosten und aufgrund der Möglichkeit, vielfältige Konzepte einfach herstellen zu können, als vielversprechend. Dennoch müssen die Elektrodenmaterialien dringend verbessert werden, um den Ansprüchen an zukünftige hochentwickelte Lithium-Ionenbatterien gerecht zu werden. TiO2-basierte Anoden gelten aufgrund ihrer schnellen Lade- und Entladekinetik, ihres umweltfreundlichen Verhaltens und niedriger Kosten als aussichtsreiche Alternativen zu Kohlenstoffen. Durch die geringe Volumenänderung beim Lithiumeinbau (unter 4%) werden außerdem eine hohe strukturelle Stabilität und erhöhte Sicherheit gewährleistet. Die hauptsächlichen Herausforderungen stellen die niedrige ionische und elektrische Leitfähigkeit (≈ 10−12 S m−1) von TiO2 dar. Zusammengefasst liegt das Ziel der vorliegenden Arbeit in der Entwicklung, Optimierung und Herstellung neuartiger Anodenmaterialien für Lithium-Ionenbatterien unter Verwendung stabiler, verfügbarer und umweltfreundlicher Materialien. In dieser Arbeit wurden sowohl zweiphasiges Ti80Co20 und einphasige Ti-Sn-Legierungen (mit verschiedenen Sn-Gehalten zwischen 1 und 10 at-%) zur Herstellung hochgeordneter, vertikal orientierter eindimensionaler Nanoröhren aus gemischten Übergangsmetalloxiden (TiO2–CoO und TiO2–SnO2) mittels anodischer Oxidation in NH4F-haltigen organischen Elektrolyten genutzt. Dabei wurden Abhängigkeiten der Oberflächenmorphologie und der Stromdichte für die Bildung der Nanoröhren von der Kristallstruktur der zugrundeliegenden Legierung beobachtet. Vielfältige Methoden wie REM, EDXS, TEM, XPS und Ramanspektroskopie wurden genutzt, um die Nanoröhren zu charakterisieren. Die Ergebnisse zeigen, dass gemischte TiO2-CoO und TiO2-SnO2 Nanoröhren in den gewählten Spannungsfenstern erfolgreich gebildet werden konnten. Die so hergestellten Nanoröhren sind amorph und in ihren Dimensionen präzise durch die Wahl der Spannung einstellbar. Eine elektrochemische Beurteilung der Nanoröhren erfolgte durch Tests gegen eine Li/Li+-Elektrode bei veschiedenen Stromdichten. Die Resultate zeigen, dass TiO2-CoO-Nanoröhren, welche bei 60 V hergestellt wurden, die höchsten Flächenkapazitäten von ~ 600 µAh cm–2 (d.h. 315 mAh g–1) bei einer Stromdichte von 10 µA cm–2 aufweisen. Bei höheren Stromdichten zeigen TiO2-CoO-Nanoröhren nahezu verdoppelte Lithiuminterkalation und eine Coulomb-Effizienz von 96 % nach 100 Zyklen, verglichen mit weniger effektiven TiO2–Nanoröhren, welche unter identischen Bedingungen hergestellt wurden. Um die elektrochemischen Eigenschaften der TiO2-CoO-Nanoröhren weiter zu verbessern, wurde ein neuer Komposit aus Kohlenstoff-Nanoröhren und TiO2-CoO-Nanoröhren ((CNT)s@TiO2/CoO) durch eine zweistufige Synthese hergestellt. Die Herstellung beinhaltet zunächst die anodische Bildung geordneter TiO2/CoO-Nanoröhren, ausgehend von einer Ti-Co-Legierung, gefolgt von einem horizontalen Kohlenstoff-Nanoröhren-Wachstum auf dem Oxid mittels einer simplen Sprühpyrolyse. Die einzigartige 1D-Struktur einer solchen hybriden Nanostruktur mit eingebundenen CNTs zeigt deutlich erhöhte Flächenkapazitäten und Belastbarkeiten im Vergleich zu Nanoröhren aus TiO2 und TiO2/CoO-Nanoröhren ohne CNTs, die unter identischen Bedingungen getestet wurden. Die Ergebnisse zeigen, dass die CNTs ein hochleitfähiges Netzwerk bilden, welches die Diffusion von Lithium-Ionen und deren Einbau in die TiO2/CoO-Nanoröhren begünstigt und somit hohe Kapazitäten und reproduzierbare hohe Belastbarkeiten bewirkt. Außerdem zeigen die Resultate, dass TiO2-SnO2 Nanoröhren, welche bei 40 V auf einer Ti-Sn-Legierung mit 1 at.% Sn hergestellt wurden, im Mittel eine 1,4-fache Erhöhung der Flächenkapazität und eine exzellente Zyklenstabilität über mehr als 400 Zyklen, verglichen mit unter identischen Konditionen hergestellten und getesteten TiO2-Nanoröhren, zeigen. Die Arbeit ist wie folgt organisiert: Kapitel 1: Allgemeine Einführung, in der die Energienachfrage und die Bedeutung von Lithium-Ionenbatterien in erneuerbaren Energiesystemen und tragbaren Geräten diskutiert wird. Eine kurze Einleitung zu TiO2-basierten Anoden in Lithium-Ionenbatterien und allgemeine Strategien zur Entwicklung von TiO2-Anoden werden ebenfalls gezeigt. Das Ziel der Arbeit und hauptsächliche Aufgaben werden zusammengefasst. Kapitel 2: Das grundlegende Konzept der Lithium-Ionenbatterie mit einem Überblick über ihre Hauptkomponenten wird diskutiert. Dies beinhaltet auch eine kurze Darstellung der Anodenmaterialien und der Kristallstruktur von TiO2-Anoden. Eine detaillierte Übersicht über TiO2-Nanomaterialien für LIB, welche Herstellungsmethoden und die elektrochemische Performance verschiedener TiO2-Nanostrukturen (Nanopartikel, Nanostäbe, Nanonadeln, Nanodrähte und Nanoröhren) und poröser TiO2-Nanostrukturen beinhaltet, wird gezeigt. Die Bildung von TiO2-Nanoröhren durch anodische Oxidation und der Wachstumsmechanismus werden hervorgehoben. Faktoren, welche die elektrochemische Performance anodisch hergestellter TiO2-Materialien, TiO2/Kohlenstoff-Komposite und TiO2 als Gemisch mit anderen Metalloxiden beeinflussen, werden diskutiert. Kapitel 3: In diesem Kapitel werden die Synthese von TiO2-CoO, (CNTs)@TiO2/CoO und TiO2-SnO2-Nanoröhren, die Charakterisierungsmethoden, elektrochemische Grundlagen und Konzepte diskutiert. Kapitel 4: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der TiO2-CoO- Nanoröhren und der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden gezeigt. Kapitel 5: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden diskutiert. Kapitel 6: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance von TiO2-SnO2-Nanoröhren werden gezeigt. Kapitel 7: Eine Zusammenfassung der Resultate, die in dieser Arbeit gezeigt wurden und Schlussfolgerungen, sowie interessante Ansatzpunkte für zukünftige Arbeiten werden präsentiert.:1. Introduction and scope of the thesis 15 1.1 Batteries for renewable energy systems and portable devices 15 1.2 TiO2-based anodes in lithium ion batteries 17 1.3 Strategies for developing TiO2 anodes 17 1.4 Scope of work 19 1.5 Tasks 20 2. Basics and literature review 23 2.1 Lithium ion battery system 23 2.2 Anode materials 26 2.3 Crystal structure of TiO2 28 2.4 TiO2 nanomaterials for LIBs 30 2.4.1 TiO2 nanoparticles 30 2.4.2 TiO2 nanoneedles 36 2.4.3 Porous TiO2 nanostructures 39 2.5 TiO2 nanotubes prepared by electrochemical anodization 44 2.6 The mechanism of nanotube formation by anodic oxidation 47 2.7 Anodically fabricated TiO2 nanotubes as anodes in LIBs 49 2.7.1 Anodization electrolyte 50 2.7.2 Amorphous and crystalline TiO2 anodes 50 2.7.3 Influence of the nnealing atmospheres of TiO2 52 2.7.4 Free-standing TiO2 nanotube membranes 54 2.7.5 TiO2 nanotubes/carbon composites 55 2.7.6 Mixed oxide nanotubes 55 3. Materials and methods 61 3.1 Methodology 61 3.1.1 Synthesis of TiO2-CoO and TiO2 nanotubes 61 3.1.2 Synthesis of CNTs@TiO2-CoO NT composite 62 3.1.3 Synthesis of TiO2-SnO2 and TiO2 nanotubes 63 3.2 Characterization techniques 64 3.2.1 X-ray diffraction (XRD 64 3.2.2 Scanning electron microscopy (SEM 65 3.2.3 Energy-dispersive X-ray spectroscopy (EDXS 65 3.2.4 Transmission electron spectroscopy (TEM 66 3.2.5 X-ray photoelectron spectroscopy (XPS 66 3.2.6 Raman spectroscopy 67 3.2.7 Nitrogen sorption isotherms 67 3.2.8 Inductively coupled plasma optical emission spectroscopy (ICP–OES 68 3.3 Basic definitions and electrochemical concepts 68 3.3.1 Faraday’s law 68 3.3.2 Capacity 69 3.3.3 Discharging 69 3.3.4 Charging 69 3.4 Electrochemical techniques 70 3.4.1 Cyclic voltammetry 70 3.4.2 Galvanostatic discharging/charging cycling 70 3.4.3 Electrochemical impedance spectroscopy (EIS 71 3.5 Electrode preparation and measurement conditions 71 3.5.1 TiO2-CoO nanotube electrodes 71 3.5.2 CNTs@TiO2 and CNTs@TiO2/CoO NTs electrodes 72 3.5.3 TiO2-SnO2 nanotube electrodes 73 4. TiO2-CoO as anodes in lithium ion batteries 75 4.1 Introduction 76 4.2 Characterization 76 4.2.1 Phase identification of as cast Ti-Co alloy 76 4.2.2 Time-current density relationship 79 4.2.3 Morphology of the fabricated TiO2-CoO nanotubes 81 4.2.4 Phase identification of the fabricated TiO2-CoO nanotubes 85 4.2.5 Specific surface area of the fabricated TiO2-CoO nanotubes 87 4.2.6 Chemical state in the grown TiO2-CoO nanotubes 89 4.2.7 Raman spectroscopy of TiO2-CoO nanotubes 91 4.3 Electrochemical testing of TiO2-CoO electrodes 92 4.3.1 Cyclic voltammetry 92 4.3.2 Galvanostatic cycling with potential limitation 93 4.3.3 Electrochemical impedance spectroscopy (EIS) 97 4.3.4 Structural stability TiO2-CoO anodes over cycling 98 4.4 Summary of chapter 4 99 5. Ternary CNTs@TiO2-CoO nanotube composites: improved anode materials for LIBs 101 5.1 Introduction 102 5.2 Characterization 103 5.2.1 Morphology and Raman analysis of the fabricated CNTs@TiO2-CoO NTs 103 5.2.2 XRD analysis of the fabricated TiO2-CoO NTs before and after CNTs coating 106 5.3 Electrochemical properties 107 5.3.1 Cyclic voltammetry 107 5.3.2 Galvanostatic cycling with potential limitation 109 5.3.2 Electrochemical impedance spectroscopy (EIS 112 5.4 Summary of chapter 5 114 6. TiO2-SnO2 nanotubes as anodes in lithium ion batteries 115 6.1 Introduction 116 6.2 Characterization 117 6.2.1 ICP-OES analysis of the as-cast Ti-Sn alloys 117 6.2.2 SEM analysis of the as-cast Ti-Sn alloys 117 6.2.3 Phase analysis of the as-cast Ti-Sn alloys 118 6.2.4 Morphology of the fabricated TiO2-SnO2 nanotubes 121 6.2.5 XPS investigation of the grown TiO2-SnO2 nanotubes 127 6.2.6 Raman spectroscopy of TiO2-SnO2 nanotubes 129 6.3 Electrochemical Testing 130 6.3.1 Cyclic voltammetry 130 6.3.2 Galvanostatic cycling with potential limitation132 6.3.3 Specific surface area of the fabricated TiO2-SnO2 nanotubes135 6.3.4 Electrochemical impedance spectroscopy (EIS) and rate performance tests of the fabricated TiO2-SnO2 nanotubes 137 6.4 Summary of chapter 6140 7. Summary and outlook 141 7.1 Summary 141 7.2 Outlook 143 Appendix 145 Bibliography 157 List of figures 183 Glossary 191 Publications 193 Curriculum vitae 195 Acknowledgment 199 Declaration 201

Page generated in 0.065 seconds