Spelling suggestions: "subject:"river cancer"" "subject:"river devancer""
211 |
Development of plasma-based DNA methylation markers for the detection of hepatocellular carcinoma.January 2009 (has links)
Kan, Hoi Lam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 103-124). / Abstracts in English and Chinese. / ABSTRACT --- p.i / 摘要 --- p.iv / ACKNOWLEDGEMENTS --- p.vi / TABLE OF CONTENTS --- p.viii / LIST OF TABLES --- p.xii / LIST OF FIGURES --- p.xiii / LIST OF ABBREVIATIONS --- p.xiv / PUBLICATION --- p.xvi / Chapter SECTION I: --- BACKGROUND --- p.1 / Chapter Chapter 1: --- Hepatocellular Carcinoma (HCC) --- p.2 / Chapter 1.1. --- Epidemiology of HCC --- p.3 / Chapter 1.2. --- Etiology of HCC --- p.3 / Chapter 1.2.1. --- Cirrhosis --- p.4 / Chapter 1.2.2. --- Hepatitis virus --- p.4 / Chapter 1.2.3. --- Plant carcinogens --- p.5 / Chapter 1.2.4. --- Miscellaneous factors --- p.6 / Chapter 1.3. --- Clinical presentation of HCC --- p.6 / Chapter 1.4. --- Existing diagnostic tests for HCC --- p.6 / Chapter 1.4.1. --- Alpha-fetoprotein (AFP) --- p.7 / Chapter 1.4.2. --- Imaging --- p.7 / Chapter 1.5. --- Treatment of HCC --- p.8 / Chapter 1.5.1. --- Surgical Resection and Transplantation --- p.8 / Chapter 1.5.2. --- Tumor Ablation or Embolization --- p.8 / Chapter 1.5.3. --- Chemotherapy and Radiotherapy --- p.9 / Chapter 1.6. --- Tumor marker development for HCC detection --- p.10 / Chapter 1.6.1. --- Oncofetal antigens and glycoprotein antigens --- p.11 / Chapter 1.6.2. --- Enzymes and isoenzymes --- p.12 / Chapter 1.6.3. --- Growth factors --- p.12 / Chapter 1.6.4. --- Genetics and epigenetics - mRNA and methylation --- p.13 / Chapter Chapter 2: --- Hypermethylation of tumor suppressor genes in cancer --- p.14 / Chapter 2.1. --- Cancer epigenetics --- p.14 / Chapter 2.2. --- DNA methylation in normal cells --- p.15 / Chapter 2.3. --- Physiological role of DNA methylation in normal cells --- p.18 / Chapter 2.4. --- Aberrant DNA methylation in cancer --- p.19 / Chapter 2.4.1. --- DNA hypomethylation in cancer --- p.20 / Chapter 2.4.2. --- DNA hypermethylation in cancer --- p.20 / Chapter 2.5. --- Development of methylation markers in tumor diagnosis --- p.21 / Chapter 2.5.1. --- Methods for the analysis of DNA methylation markers --- p.22 / Chapter 2.5.2. --- Detection of tumor-associated methylated DNA in the circulation of cancer patients / Chapter 2.6. --- Aim of thesis --- p.27 / Chapter SECTION II: --- MATERIALS AND METHODS --- p.28 / Chapter Chapter 3: --- Methods for detecting DNA methylation --- p.29 / Chapter 3.1. --- Subject recruitment --- p.29 / Chapter 3.2. --- Sample collection and processing --- p.29 / Chapter 3.2.1. --- Tumor tissue samples --- p.29 / Chapter 3.2.2. --- Peripheral blood samples --- p.29 / Chapter 3.3. --- DNA extraction --- p.30 / Chapter 3.3.1. --- Plasma samples --- p.30 / Chapter 3.3.2. --- Blood cells --- p.33 / Chapter 3.3.3. --- Tumor tissue --- p.33 / Chapter 3.4. --- Quantitative analysis of methylated DNA using methylation-sensitive restriction enzyme-mediated real-time quantitative PCR (MSRE-qPCR) --- p.34 / Chapter 3.4.1. --- Methylation-sensitive restriction enzyme-mediated real-time quantitative PCR --- p.34 / Chapter 3.4.3. --- Real-time PCR primer design --- p.36 / Chapter 3.4.4. --- Duplex real-time PCR --- p.40 / Chapter 3.4.5. --- "Real-time detection of GSTP1, SOCS1, A PC, pl6 and ACTB sequences" --- p.41 / Chapter 3.4.6. --- Statistical analysis of real-time PCR results --- p.41 / Chapter 3.5. --- "Methylation study of GSTP1, SOCS1, APC, pl6 and ACTB in tumor tissues and blood cells using bisulfite sequencing" --- p.46 / Chapter 3.5.1. --- Principle of bisulfite modification --- p.46 / Chapter 3.5.2. --- Bisulfite conversion --- p.47 / Chapter 3.5.3. --- Sequencing primer design --- p.47 / Chapter 3.5.4. --- Conventional PCR after bisulfite treatment --- p.49 / Chapter 3.5.5. --- Cloning and bisulfite genomic sequencing --- p.53 / Chapter 3.5.6. --- Data acquisition and interpretation --- p.54 / Chapter SECTION III: --- DEVELOPMENT OF METHYLATION MARKERS IN HCC DETECTION / Chapter Chapter 4: --- Evaluation of the real-time PCR assay for quantification of methylated tumor suppressor genes --- p.57 / Chapter 4.1. --- Development of real-time PCR assays --- p.57 / Chapter 4.2. --- Methylation analyses by bisulfite sequencing were concordant with the real-time quantification results --- p.61 / Chapter Chapter 5: --- Clinical application of methylated markers in the detection of hepatocellular carcinoma --- p.69 / Chapter 5.1. --- Demographics of HCC patients and HB V carriers --- p.69 / Chapter 5.2. --- Quantitative analysis of hypermethylated tumor suppressor genes in tumor and plasma samples --- p.71 / Chapter 5.3. --- Effect of cirrhosis on the plasma methylated tumor suppressor gene concentrations --- p.77 / Chapter 5.4. --- Changes in the concentration of the tumor suppressor genes one month after surgical resection of the cancer --- p.81 / Chapter 5.5. --- Concurrent use of serum AFP level and plasma methylated markers for HCC diagnosis --- p.84 / Chapter 5.6. --- Prognostic value of plasma methylated TSGs --- p.86 / Chapter SECTION IV: --- DISCUSSION --- p.90 / Chapter Chapter 6: --- Discussion --- p.91 / Chapter 6.1. --- Tumor and plasma detection of hypermethylated tumor suppressor genes --- p.92 / Chapter 6.2. --- No effect of cirrhosis on plasma methylated DNA level --- p.94 / Chapter 6.3. --- Clearance of methylated TSG sequences after tumor resection --- p.95 / Chapter 6.4. --- Concurrent use of serum AFP level and the presence of methylated markers in the plasma in HCC diagnosis --- p.95 / Chapter 6.5. --- Prognostic significance of circulating methylated tumor markers --- p.96 / Chapter SECTION V: --- CONCLUDING REMARKS --- p.98 / Chapter Chapter 7: --- Conclusions and future perspectives --- p.99 / REFERENCES --- p.103
|
212 |
In vitro and in vivo study of effects of sinigrin on liver.January 2006 (has links)
Meng Jie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Table of Contents --- p.vi / Abbreviation --- p.x / List of Figures --- p.xi / List of Tables --- p.xiii / Chapter Chapter 1: --- Introduction --- p.1 / Chapter 1.1 --- Black Mustard and Sinigrin --- p.2 / Chapter 1.2 --- Hepatocellular Carcinoma --- p.5 / Chapter 1.2.1 --- Different Stages of HCC --- p.6 / Chapter 1.2.2 --- Risk Factors --- p.8 / Chapter 1.2.3 --- Treatments of HCC --- p.10 / Chapter 1.3 --- Biomarkers Used to Evaluate Effects of Sinigrin on HCC --- p.12 / Chapter 1.3.1 --- AST & ALT --- p.12 / Chapter 1.3.2 --- Glutathione S Transferase -p (GST-p) --- p.13 / Chapter 1.4 --- Tumor Suppressor Genes and Oncogenes --- p.14 / Chapter 1.4.1 --- "p53, the Tumor Suppressor Gene" --- p.15 / Chapter 1.4.2 --- p53-dependent pathway --- p.15 / Chapter 1.4.2.1 --- Mdm2 --- p.16 / Chapter 1.4.2.2 --- Bax and Bcl-2 --- p.17 / Chapter 1.4.2.3 --- PCNA and p21wAF1/CIP1 --- p.18 / Chapter 1.5 --- Aim of the Project --- p.19 / Chapter Chapter 2: --- Materials and Methods --- p.20 / Chapter 2.1 --- In vitro Studies --- p.21 / Chapter 2.1.1 --- Neutral Red Assay --- p.21 / Chapter 2.1.1.1 --- Chemicals and Reagents --- p.21 / Chapter 2.1.1.2 --- Liver Cells --- p.23 / Chapter 2.1.1.3 --- Neutral Red Assay --- p.24 / Chapter 2.1.2 --- Flow Cytometery --- p.24 / Chapter 2.1.2.1 --- Chemicals and Reagents --- p.25 / Chapter 2.1.2.2 --- Flow Cytometery Analysis --- p.25 / Chapter 2.1.3 --- DNA Fragmentation --- p.26 / Chapter 2.1.3.1 --- Chemicals and Reagents --- p.26 / Chapter 2.1.3.2 --- DNA Extraction --- p.28 / Chapter 2.1.3.3 --- DNA Agarose Gel Electrophoresis --- p.29 / Chapter 2.1.4 --- cDNA Microarray --- p.29 / Chapter 2.1.4.1 --- Chemicals and Reagents --- p.30 / Chapter 2.1.4.2 --- RNA Extraction --- p.33 / Chapter 2.1.4.3 --- RNA Quantity and Quality Control --- p.34 / Chapter 2.1.4.4 --- RT-PCR --- p.35 / Chapter 2.1.4.5 --- cRNA Convention and Purification --- p.36 / Chapter 2.1.4.6 --- Hybridization --- p.37 / Chapter 2.1.4.7 --- Washing and Detection --- p.37 / Chapter 2.1.4.8 --- Data Analysis --- p.38 / Chapter 2.2 --- In vivo Studies --- p.39 / Chapter 2.2.1 --- Animal Treatment --- p.39 / Chapter 2.2.1.1 --- Chemicals and Reagents --- p.39 / Chapter 2.2.1.2 --- Chemical Carcinogens --- p.40 / Chapter 2.2.1.3 --- Promotion Stage --- p.41 / Chapter 2.2.1.4 --- Progression Stage --- p.44 / Chapter 2.2.2 --- Measurement of Serum ALT and AST Activities --- p.46 / Chapter 2.2.2.1 --- Chemicals and Reagents --- p.46 / Chapter 2.2.2.2 --- Activity Assay --- p.46 / Chapter 2.2.3 --- Histological Analysis --- p.47 / Chapter 2.2.3.1 --- Chemicals and Reagents --- p.47 / Chapter 2.2.3.2 --- Preparation of Slides --- p.49 / Chapter 2.2.3.3 --- H&E Staining --- p.49 / Chapter 2.2.3.4 --- GST-p Immuno-staining --- p.50 / Chapter 2.2.4 --- Semi-Quantitative RT-PCR Analysis of mRNA Expression --- p.53 / Chapter 2.2.4.1 --- Chemicals and Reagents --- p.53 / Chapter 2.2.4.2 --- Extraction of total RNA from rat liver --- p.53 / Chapter 2.2.4.3 --- Quantity and Quality Control of RNA --- p.53 / Chapter 2.2.4.4 --- RT-PCR (Reverse Transcription) --- p.54 / Chapter 2.2.4.5 --- PCR --- p.54 / Chapter 2.2.4.6 --- DNA gel electrophoresis --- p.55 / Chapter 2.2.4.7 --- Data Analysis --- p.56 / Chapter 2.2.5 --- Western Blot Analysis for Biomarkers --- p.56 / Chapter 2.2.5.1 --- Chemicals and Reagents --- p.56 / Chapter 2.2.5.2 --- Extraction of the Cytosol Protein --- p.60 / Chapter 2.2.5.3 --- Extraction of the Nuclear protein --- p.61 / Chapter 2.2.5.4 --- SDS Gel Electrophoresis --- p.61 / Chapter 2.2.5.5 --- Western Blot --- p.62 / Chapter 2.2.5.6 --- Interaction with Antibodies --- p.63 / Chapter 2.2.5.7 --- ECL Detection --- p.63 / Chapter 2.2.5.8 --- Data Analysis --- p.64 / Chapter Chapter 3: --- Results --- p.65 / Chapter 3.1 --- In vitro Studies --- p.66 / Chapter 3.1.1 --- Cell Viability test and IC50 --- p.66 / Chapter 3.1.2 --- Cell Cycle Analysis --- p.68 / Chapter 3.1.3 --- DNA Fragmentation --- p.71 / Chapter 3.1.4 --- Effects of Sinigrin on Gene Expression --- p.73 / Chapter 3.2 --- In vivo Studies --- p.77 / Chapter 3.2.1 --- Effects of Sinigrin on HCC Development (Promotion stage) in Rats --- p.77 / Chapter 3.2.1.1 --- Direct Observation --- p.77 / Chapter 3.2.1.2 --- Relative Liver / Body Weight Ratio --- p.79 / Chapter 3.2.1.3 --- AST/ALT Assay --- p.81 / Chapter 3.2.1.4 --- Basic Structure of Hepatocytes --- p.83 / Chapter 3.2.1.5 --- GST-p Foci Area --- p.85 / Chapter 3.2.1.6 --- mRNA Expression of p53 and Mdm2 --- p.88 / Chapter 3.2.1.7 --- Protein Expression of Biomarkers --- p.90 / Chapter 3.2.2 --- Effects of Sinigrin on HCC Development (Progression stage) in Rats --- p.97 / Chapter 3.2.2.1 --- Direct Observation --- p.97 / Chapter 3.2.2.2 --- Relative Liver / Body Weight Ratio --- p.99 / Chapter 3.2.2.3 --- AST/ALT Assay --- p.101 / Chapter 3.2.2.4 --- Basic Structure of Hepatocytes --- p.103 / Chapter 3.2.2.5 --- GST-p Foci Area --- p.105 / Chapter 3.2.2.6 --- mRNA Expression of p53 and Mdm2 --- p.108 / Chapter 3.2.2.7 --- Protein Expression of Biomarkers --- p.110 / Chapter Chapter 4: --- Discussion --- p.116 / Chapter 4.1 --- Protective and Therapeutic Benefits of Sinigrin --- p.117 / Chapter 4.1.1 --- Effects of SIN on Cancer and Normal Cells --- p.117 / Chapter 4.1.2 --- Effective Tumor Induction by DEN-CC14 Treatment --- p.118 / Chapter 4.1.3 --- Protective Effect of SIN in the Promotion Stage of HCC --- p.118 / Chapter 4.1.4 --- Therapeutic Effect of SIN in the Progression Stage of HCC --- p.119 / Chapter 4.2 --- Biological Activities of SIN --- p.121 / Chapter 4.3 --- Summary --- p.134 / References --- p.xiv
|
213 |
In vitro and in vivo photodynamic activities for BAM-SiPc, an unsymmetrical bisamino silicon(IV) phthalocyanine.January 2007 (has links)
Leung, Ching Hei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 101-110). / Abstracts in English and Chinese. / Acknowledgements --- p.i / 摘要(Abstract in Chinese) --- p.iii / Abstract --- p.v / List of Abbreviations --- p.vii / List of Figures and Tables --- p.ix / Table of Content --- p.xi / Chapter CHAPTER 1 --- Introduction / Chapter 1.1 --- History and development of photodynamic therapy --- p.1 / Chapter 1.2 --- Basic principle of photodynamic therapy: the beauty of the treatment --- p.3 / Chapter 1.3 --- "Photosensitizers: From discovery, synthesis to modifications" --- p.6 / Chapter 1.4 --- Enhancement of selective retention of PS in cancerous tissue --- p.10 / Chapter 1.5 --- Development of silicon (IV) phthalocyanine derivatives --- p.14 / Chapter 1.6 --- Death mechanisms in photodynamic therapy --- p.17 / Chapter 1.7 --- Objectives of the present study --- p.18 / Chapter CHAPTER 2 --- Materials and Methods / Chapter 2.1 --- Synthesis of BAM-SiPc --- p.20 / Chapter 2.2 --- Preparation of BAM-SiPc solution for photodynamic treatment --- p.20 / Chapter 2.3 --- Cell line and culture conditions --- p.21 / Chapter 2.4 --- Animal tumor model --- p.23 / Chapter 2.5 --- PDT laser source --- p.23 / Chapter 2.6 --- In vitro photodynamic activity assay --- p.23 / Chapter 2.6.1 --- Preparation of cells for photodynamic treatment / Chapter 2.6.2 --- In vitro photodynamic treatment / Chapter 2.6.3 --- Cell viability assay / Chapter 2.7 --- "Determination of reactive oxygen species production by 2',7'- dichlorofluorescein diacetate (DCFDA) assay" --- p.28 / Chapter 2.8 --- Analysis of cell cycle arrest --- p.28 / Chapter 2.9 --- Biodistribution of BAM-SiPc --- p.29 / Chapter 2.10 --- In vivo photodynamic treatment --- p.30 / Chapter 2.11 --- Assay for plasma enzyme activities --- p.30 / Chapter 2.12 --- Determination of cellular uptake of BAM-SiPc --- p.31 / Chapter 2.13 --- Metabolism of BAM-SiPc --- p.31 / Chapter 2.14 --- Histochemical staining --- p.32 / Chapter 2.14.1 --- Preparation of paraffin-embedded tissue section / Chapter 2.14.2 --- Haematoxylin and Eosin (H & E) staining / Chapter 2.14.3 --- Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay / Chapter 2.15 --- Conjugation of BAM-SiPc with LDL --- p.34 / Chapter 2.15.1 --- Analysis of the phototoxicity and cellular uptake of BAM- SiPc in the presence of LDL / Chapter 2.15.2 --- Gel filtration analysis of the mixture of LDL and BAM- SiPc / Chapter 2.16 --- Statistical analysis --- p.35 / Chapter CHAPTER 3 --- Results / Chapter 3.1 --- In vitro photodynamic activity assays --- p.36 / Chapter 3.2 --- Tissue distribution of BAM-SiPc in HepG2- bearing nude mice --- p.39 / Chapter 3.3 --- Anti-tumor activities of in vivo PDT with BAM-SiPc --- p.42 / Chapter 3.3.1 --- In vivo effect of PDT treatment with BAM-SiPc on HepG2 and HT29 tumor growth / Chapter 3.3.2 --- Dosage effect on anti-tumor activities by BAM-SiPc mediated PDT / Chapter 3.4 --- Analysis of intrinsic toxicity induced by BAM-SiPc mediated PDT --- p.48 / Chapter 3.4.1 --- H & E staining of liver sections of nude mice after in vivo PDT / Chapter 3.4.2 --- Plasma enzyme activity assays of PDT treated mice / Chapter 3.5 --- BAM-SiPc metabolism in in vitro culture cells and liver homogenate --- p.53 / Chapter 3.5.1 --- Cellular uptake of BAM-SiPc / Chapter 3.5.2 --- BAM-SiPc metabolism in cultured normal liver cells and cancer cells / Chapter 3.5.3 --- BAM-SiPc metabolism by mice liver homogenate / Chapter 3.6 --- Death mechanism induced by BAM-SiPc mediated PDT --- p.62 / Chapter 3.6.1 --- Events related to cell death induced by in vitro BAM-SiPc mediated PDT / Chapter 3.6.2 --- Death mechanism exerted by in vivo BAM-SiPc mediated PDT / Chapter 3.7 --- Effect on phototoxicity of BAM-SiPc in the presence of LDL --- p.70 / Chapter 3.7.1 --- Effect on phototoxicity of BAM-SiPc after mixing BAM- SiPc with LDL / Chapter 3.7.2 --- Gel filtration for analysis of the LDL-BAM-SiPc mixture / Chapter CHAPTER 4 --- Discussion / Chapter 4.1 --- Anti-cancer effect of BAM-SiPc on different cancer cell lines --- p.76 / Chapter 4.2 --- Tissue distribution of BAM-SiPc in HepG2 bearing nude mice --- p.77 / Chapter 4.3 --- In vivo effect of BAM-SiPc mediated PDT on HepG2 and HT29 tumor growth --- p.80 / Chapter 4.4 --- Analysis of the safety of using BAM-SiPc as a potential agent in PDT --- p.83 / Chapter 4.5 --- Metabolism of BAM-SiPc --- p.84 / Chapter 4.6 --- Mechanism of the apoptosis triggered by BAM-SiPc mediated PDT --- p.88 / Chapter 4.7 --- Death mechanism induced by in vivo PDT with BAM-SiPc --- p.93 / Chapter 4.8 --- Phototoxicity of BAM-SiPc in the presence of LDL --- p.94 / Chapter CHAPTER 5 --- Conclusion and Future perspective / Chapter 5.1 --- Conclusion --- p.97 / Chapter 5.2 --- Future perspective --- p.98 / References
|
214 |
In vitro and in vivo study of effects of andrographolide on hepatocarcinogenesis.January 2006 (has links)
Lau Ven Gie Vengie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 113-121). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABSTRACT --- p.ii / 論文摘要 --- p.iv / TABLE OF CONTENTS --- p.vi / LIST OF FIGURES --- p.ix / LIST OF TABLES --- p.x / LIST OF ABBREVIATIONS --- p.xi / INTRODUCTION --- p.1 / Chapter I --- Hepatocellular Carcinoma --- p.1 / Risk factors --- p.1 / Stages in chemical carcinogenesis --- p.2 / Initiation --- p.2 / Promotion --- p.3 / Progression --- p.5 / Treatment of hepatocarcinoma --- p.6 / Chemotherapy ´ؤ hepatic arterial infusion (HAI) --- p.6 / Trans-arterial chemoembolization (TACE) --- p.7 / Radiofrequency ablation (RFA) --- p.8 / Percutaneous ethanol injection (PEI) --- p.9 / Liver resection --- p.9 / Liver transplantation --- p.10 / Chapter II --- Molecular Mechanisms: Oncogenes and Tumor-suppressor genes --- p.11 / Cell cycle control --- p.12 / p53 mutation in HCC --- p.13 / Normal functions of p53 and its target genes --- p.13 / p21(Wafl/Cipl/Sdil) --- p.13 / PCNA --- p.14 / Bcl-2 and Bax: the Bcl-2 family --- p.14 / Mdm2 --- p.17 / Chapter III --- Evaluation of the effects of hepatocarcinogenesis --- p.19 / GST-Pi --- p.19 / AST & ALT --- p.19 / Chapter IV --- Traditional Chinese Medicine (TCM) --- p.21 / Andrographis Paniculata --- p.21 / Pharmacological properties of andrographolide --- p.23 / Chapter V --- Aim of the project --- p.26 / MATERIALS AND METHODS --- p.27 / Chapter 1 --- Effects of andrographolide on cell viability and cell cycle --- p.27 / Chapter 1.1 --- Materials and solutions --- p.27 / Chapter 1.2 --- Preparation of solutions --- p.28 / Chapter 1.3 --- Procedures --- p.29 / Chapter 1.3.1 --- Seeding cells into culture flask --- p.29 / Chapter 1.3.2 --- Subculturing technique --- p.30 / Chapter 1.3.3 --- Neutral red assay --- p.30 / Chapter 1.3.4 --- DNA purification of HepG2 cells --- p.31 / Chapter 1.3.5 --- DNA gel electrophoresis --- p.32 / Chapter 1.3.6 --- Flow cytometry --- p.32 / Chapter 2 --- Effects of andrographolide on gene expressions --- p.33 / Chapter 2.1 --- Materials and solutions --- p.33 / Chapter 2.2 --- Preparation of solutions --- p.34 / Chapter 2.3 --- Procedures --- p.35 / Chapter 2.3.1 --- Cell treatments --- p.35 / Chapter 2.3.2 --- mRNA extraction from cell --- p.35 / Chapter 2.3.3 --- Determination of total RNA yield and quality yield --- p.36 / Chapter 2.3.4 --- RNA formaldehyde agarose gel electrophoresis --- p.36 / Chapter 2.3.5 --- cDNA synthesis --- p.37 / Chapter 2.3.6 --- "cRNA synthesis, labeling and amplification" --- p.39 / Chapter 2.3.7 --- cRNA purification --- p.40 / Chapter 2.3.8 --- Oligo GEArray hybridization --- p.41 / Chapter 2.3.9 --- Chemiluminescent detection --- p.43 / Chapter 2.3.10 --- Data analysis --- p.44 / Chapter 3 --- Effects of andrographolide on hepatocarcinogenesis in rats --- p.45 / Chapter 3.1 --- Materials and solutions --- p.45 / Chapter 3.2 --- Preparation of solutions --- p.46 / Chapter 3.3 --- Procedures --- p.47 / Chapter 3.3.1 --- Animal treatment --- p.47 / Chapter 3.3.2 --- Promotion (Experiment 1) --- p.48 / Chapter 3.3.3 --- Progression (Experiment 2) --- p.49 / Chapter 3.3.4 --- Extraction of blood serum --- p.52 / Chapter 3.3.5 --- Measurement of absorbance --- p.52 / Chapter 3.3.6 --- Tissue processing --- p.53 / Chapter 3.3.7 --- Hematoxylin and Eosin (H&E) Staining --- p.53 / Chapter 3.3.8 --- Immunohistochemical staining of GST-P --- p.54 / Chapter 3.3.9 --- Examination of liver sections --- p.55 / Chapter 4 --- "Effects of andrographolide on the expressions of Mdm2, p53, PCNA, Bax, Bcl-2 & p21" --- p.56 / Chapter 4.1 --- Materials and solutions --- p.56 / Chapter 4.2 --- Preparation of solutions --- p.57 / Chapter 4.3 --- Procedures --- p.59 / Chapter 4.3.1 --- Total mRNA extraction from liver --- p.59 / Chapter 4.3.2 --- Reverse transcription of mRNA to cDNA --- p.59 / Chapter 4.3.3 --- Protocol for polymerase chain reaction (PCR) --- p.60 / Chapter 4.3.4 --- DNA gel electrophoresis --- p.61 / Chapter 4.3.5 --- Nuclear protein extraction --- p.61 / Chapter 4.3.6 --- Cytosolic protein extraction --- p.62 / Chapter 4.3.7 --- Determination of protein concentration --- p.62 / Chapter 4.3.8 --- Immunoprecipitation of p53 from liver nuclear protein --- p.62 / Chapter 4.3.9 --- Protein gel electrophoresis by SDS-PAGE --- p.63 / Chapter 4.3.10 --- Western blotting --- p.64 / RESULTS --- p.66 / Chapter 1 --- Effects of andrographolide on cell viability and cell cycle --- p.66 / Chapter 2 --- Effects of andrographolide on gene expressions --- p.76 / Chapter 3 --- Effects of andrographolide on hepatocarcinogenesis in rats --- p.79 / Chapter 4 --- "Effects of andrographolide on the expressions of Mdm2, p53, PCNA, Bax, Bcl-2 & p21" --- p.91 / DISCUSSION --- p.102 / CONCLUSION --- p.111 / REFERENCES --- p.113
|
215 |
Defining the oncogenic functions of hepatits B virus-human fusion transcripts in hepatocellular carcinoma. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Lau, Chi Chiu. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 133-142). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
216 |
Characterization of chromosome 7q 21-32 amplification in hepatocellular carcinoma. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Leung, Kin Chung. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 148-164). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
217 |
The role of direct carboxyl-terminal truncated HBx target genes in hepatocellular carcinoma. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Zhu, Ranxu. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 123-142). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
218 |
Functional characterization of GEF-H1 in liver tumorigenesis.January 2012 (has links)
Tsang, Chi Keung. / "November 2011." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 103-116). / Abstracts in English and Chinese. / Abstract --- p.I / 摘要 --- p.III / Acknowledgement --- p.IV / Table of content --- p.V / List of Figures --- p.VIII / List of Tables --- p.XI / Abbreviations --- p.XII / Chapter Chapter 1: --- INTRODUCTION --- p.1 / Chapter 1.1. --- Hepatocellular carcinoma --- p.2 / Chapter 1.1.1. --- Etiological factors --- p.11 / Chapter 1.1.1.1. --- Chronic Hepatitis and Liver Cirrhosis --- p.13 / Chapter 1.1.1.2. --- HBV --- p.13 / Chapter 1.1.1.3. --- HCV --- p.17 / Chapter 1.1.1.4. --- Male gender --- p.20 / Chapter 1.1.1.5. --- Aflatoxin B1 exposure --- p.21 / Chapter 1.2. --- Genomic abnormalities in HCC --- p.23 / Chapter 1.3. --- GEF-H1 --- p.24 / Chapter 1.4. --- RhoA --- p.26 / Chapter 1.5. --- Epithelial-Mesenchymal Transition (EMT) --- p.29 / Chapter 1.6. --- Aims of Thesis --- p.31 / Chapter Chapter 2: --- MATERIALS AND METHODS --- p.32 / Chapter 2.1. --- Materials --- p.33 / Chapter 2.1.1. --- Chemicals and Reagents --- p.33 / Chapter 2.1.2. --- Buffers --- p.35 / Chapter 2.1.3. --- Cell Culture --- p.37 / Chapter 2.1.4. --- Nucleic Acids --- p.38 / Chapter 2.1.5. --- Enzymes --- p.39 / Chapter 2.1.6. --- Equipments --- p.40 / Chapter 2.1.7. --- Kits --- p.41 / Chapter 2.1.8. --- Antibodies --- p.42 / Chapter 2.1.9. --- Software and Web Resources --- p.43 / Chapter 2.2. --- Fluorescence In Situ Hybridization (FISH) --- p.44 / Chapter 2.2.1. --- Probe Preparation --- p.44 / Chapter 2.2.1.1. --- Human Bacterial Artificial Chromosome (BAC) probe preparation --- p.44 / Chapter 2.2.1.2. --- Nick translation --- p.44 / Chapter 2.2.2. --- Hybridization --- p.45 / Chapter 2.3. --- Genomic DNA extraction --- p.47 / Chapter 2.4. --- Copy number analysis --- p.48 / Chapter 2.5. --- Exon Sequencing analysis --- p.49 / Chapter 2.5.1. --- PCR amplification of GEF-H1 exons --- p.49 / Chapter 2.5.2. --- Cycle sequencing --- p.49 / Chapter 2.6. --- Ectopic expression of GEF-H1 in immortalized hepatocyte cell line --- p.52 / Chapter 2.6.1. --- Construction of GEF-H1 expressing vector --- p.52 / Chapter 2.6.2. --- Sub-cloning --- p.52 / Chapter 2.6.3. --- Transfection and clonal selection --- p.53 / Chapter 2.7. --- Gene Expression Analysis by Quantitative RT-PCR --- p.55 / Chapter 2.7.1. --- Total RNA extraction --- p.55 / Chapter 2.7.2. --- qRT-PCR analysis for gene expression --- p.55 / Chapter 2.8. --- Western blot --- p.58 / Chapter 2.9. --- Functional Analysis --- p.60 / Chapter 2.9.1. --- Cell viability (MTT) assay --- p.60 / Chapter 2.9.2. --- Cell proliferation assays (BrdU-incorporation) --- p.60 / Chapter 2.9.3. --- Mitomycin C treatment --- p.61 / Chapter 2.9.4. --- Migration and Invasion assays --- p.63 / Chapter 2.9.5. --- Wound healing assay --- p.65 / Chapter 2.9.6. --- Transient knock-down of RhoA --- p.65 / Chapter 2. --- 10. Immuno-fluorescent imaging --- p.66 / Chapter 2. --- 11. In vivo tumorigenic study of GEF-H1 by subcutaneous injection --- p.68 / Chapter 2. --- 12. Statistical analysis --- p.69 / Chapter Chapter 3: --- RESULTS --- p.70 / Chapter 3.1. --- Verifying copy number gain of GEF-H1 in high GEF-H1 expressing HCC --- p.71 / Chapter 3.2. --- Verifying if there is any GEF-H1 exon point mutation in HCC --- p.75 / Chapter 3.3. --- Functional roles of GEF-H1 in HCC --- p.77 / Chapter 3.4. --- GEF-Hl-induced functions were RhoA independent --- p.83 / Chapter 3.5. --- GEF-H1 Induction of Epithelial-mesenchymal transition in HCC --- p.88 / Chapter 3.6. --- GEF-H1 induced tumorigenicity of MIHA cells --- p.95 / Chapter Chapter 4: --- DISCUSSIONS --- p.96 / Chapter 4.1. --- GEF-H1 in HCC and other cancers --- p.97 / Chapter 4.2. --- GEF-H1 promotes cell motility --- p.98 / Chapter 4.3. --- GEF-H1 induced tumorigenicity --- p.100 / Chapter Chapter 5: --- CONCLUSIONS AND PROPOSED FUTURE INVESTIGATIONS --- p.101 / Chapter Chapter 6: --- REFERENCES --- p.103
|
219 |
Purification, identification and characterisation of signals directing embryonic stem (ES) cell differentiation : a thesis submitted to the University of Adelaide for the degree of Doctor of PhilosophyBettess, Michael David. January 2001 (has links) (PDF)
Includes bibliographical references (leaves 142-168) Aim was the purification and identification of the early primitive ectoderm-like (EPL) cell induction signals within the medium conditioned by the human hepatocellular carcinoma cell line HepG2 and the localisation of the signals that induce EPL cell and primitive ectoderm formation.
|
220 |
Purification, identification and characterisation of signals directing embryonic stem (ES) cell differentiation : a thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy / Michael David Bettess.Bettess, Michael David January 2001 (has links)
Includes bibliographical references (leaves 142-168) / x, 168 leaves : ill. (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Aim was the purification and identification of the early primitive ectoderm-like (EPL) cell induction signals within the medium conditioned by the human hepatocellular carcinoma cell line HepG2 and the localisation of the signals that induce EPL cell and primitive ectoderm formation. / Thesis (Ph.D.)--University of Adelaide, Dept. of Molecular Biosciences (Biochemistry), 2001
|
Page generated in 0.0813 seconds