Spelling suggestions: "subject:"river etabolism."" "subject:"river emetabolism.""
11 |
Rôle de la Reptine in vivo dans la physiopathologie hépatique / Role of Reptin in hepatic pathophysiology in vivoJavary, Joaquim 03 November 2017 (has links)
Les travaux antérieurs du laboratoire ont montré que la Reptine, une AAA+ ATPase, est surexprimée dans le carcinome hépatocellulaire où elle est nécessaire à la prolifération et la survie cellulaire. Il est connu que la Reptine joue un rôle crucial dans la stabilité de la kinase mTOR, mais son rôle physiopathologique in vivo reste inconnu. Les objectifs de ma thèse étaient d’étudier le rôle de la Reptine dans le métabolisme et la régénération hépatique grâce à un nouveau modèle murin d’invalidation hépato-spécifique de la Reptine (Reptin LKO). Nous avons montré que la Reptine régule la stabilité de la protéine mTOR in vivo, via son activité ATPase. De manière inattendue, la délétion ou l’inhibition pharmacologique de la Reptine induisent une inhibition de l’activité mTORC1 et une augmentation de l’activité mTORC2, associées à une inhibition de la lipogenèse et de la production de glucose hépatique. La délétion de la Reptine supprime complètement les phénotypes pathologiques associés au syndrome métabolique induit par un régime riche en graisses. Ainsi, l’inhibition de l’ATPase Reptine pourrait représenter une nouvelle stratégie thérapeutique pour le syndrome métabolique. Dans le modèle Reptin LKO, nous avons observé une perte progressive de l’invalidation de la Reptine associée à un phénomène de régénération hépatique. Nos résultats préliminaires suggèrent que la Reptine est nécessaire à la survie des hépatocytes et est requise pour la prolifération des hépatocytes durant la régénération hépatique après hépatectomie partielle. Pour conclure, l’ensemble de nos résultats suggèrent que la Reptine joue un rôle crucial dans l’homéostasie glucido-lipidique du foie, ainsi que dans la prolifération et la survie des hépatocytes. / Previous studies of the laboratory have shown that Reptin, an AAA+ ATPase, is overexpressed in hepatocellular carcinoma where it is necessary for proliferation and cell survival. It is known that Reptin plays a critical role in the stabilization of the mTOR kinase, but its pathophysiological role in vivo remains unknown. The objectives of my thesis were to study the role of Reptin in liver metabolism and regeneration using a new hepato-specific Reptin knock-out murine model (Reptin LKO). We have shown that hepatic Reptin maintains mTOR protein level in vivo through its ATPase activity. Unexpectedly, loss or pharmacological inhibition of Reptin induces an inhibition of mTORC1 activity and an increase of mTORC2 activity, associated with inhibition of lipogenesis and hepatic glucose production. The deletion of Reptin completely rescued pathological phenotypes associated with the metabolic syndrome induced by a high fat diet. Thus, inhibition of Reptin ATPase could represent a new therapeutic perspective for the metabolic syndrome. In Reptin LKO model, we have observed a progressive loss of Reptin invalidation associated with a liver regeneration phenomenon. Our preliminary data suggest that Reptin is necessary for hepatocyte survival and is required for hepatocyte proliferation during liver regeneration after partial hepatectomy. To conclude, altogether our results suggest that Reptin plays a crucial role in glucose and lipid metabolism in the liver, and in hepatocyte proliferation and survival.
|
12 |
The role of leptin and insulin signaling in the hypothalamic control of liver metabolismFaßhauer, Martin 28 October 2013 (has links)
No description available.
|
13 |
Functional interaction between PROX1, ERR[alpha] and PGC-1[alpha] in the control of energy metabolismCharest-Marcotte, Alexis, 1984- January 2009 (has links)
Nuclear receptors play crucial roles in the transcriptional regulation of many biological processes such as development and cellular differentiation. ERRalpha is known, along with coactivator PGC-1alpha, to playa central role in the control of energy metabolism in cardiac and skeletal muscle. They activate the expression of many genes involved in mitochondrial oxidative metabolism. Here we identified PROX1, a factor that was previously shown to broadly influence metabolism, as a regulator of this pathway. Indeed, PROX1 interacts in vitro and in vivo with both ERRalpha and PGC-1alpha. To provide more insight on the hepatic functions of ERRalpha and PROX1, we performed ChIP-on-chip using mouse liver, identifying a large number of ERRalpha and PROX1 genomic targets and reinforcing their role in energy metabolism. Over 40% of the target genes were found to be common to both factors and we observed that PROX1 could be recruited to ERRalpha binding sites and act as a negative regulator o fthe ERRalpha/POC-1alpha pathway.
|
14 |
Partial hepatectomy and liver regeneration in PCSK9 knockout miceRoubtsova, Anna. January 2008 (has links)
The proprotein convertase subtilisin/kexin type 9, PCSK9, belongs to the proprotein convertase (PC) family. Human mutations in the gene encoding PCSK9 lead to either familial hyper- or hypocholesterolemia, resulting from a gain or loss of function, respectively. Mice lacking PCSK9 are viable and show a 42% decrease in plasma cholesterol levels. The enzyme triggers the degradation of the low density lipoprotein receptor (LDLR) through a partially unknown mechanism. / PCSK9 is very abundant in the liver and intestine during development and adulthood. Hepatocytes have a capacity to reproduce themselves and, upon injury, can repopulate the liver. For a better understanding of the role of PCSK9 in the liver, partial hepatectomy was performed on Pcsk9 +/+, Pcsk9+/- and Pcsk9-/- mice. The absence of PCSK9 resulted in defective liver regeneration, while wild type (WT) and heterozygous mice had no phenotype. Regeneration defects could be prevented by a high cholesterol diet. PCSK9 deficiency, by contributing to maintaining low circulating cholesterol levels may thus hamper liver regeneration. This knowledge is critical for the analysis of future PCSK9 inhibitors expected to be developed in the near future. / Key words. Proprotein convertase subtilisin/kexin 9 (PCSK9), a familial hyper- or hypocholesterolemia, low density lipoprotein receptor, knockout mouse model, partial hepatectomy.
|
15 |
Uncovering ubiquitylation pathways in liver metabolism by a proteomic approach / Mise en évidence de la voie de signalisation de l'ubiquitine dans le métabolisme hépatique par une approche protéomiqueMagliarelli, Helena 09 October 2014 (has links)
Chez les vertébrés, le foie est un des organes majeurs du métabolisme en étant le siège de la régulation de différentes voies du métabolisme qui contrôlent l’homéostasie du glucose et des lipides. En se basant sur des travaux de recherche récents suggérant que le système de conjugaison de l'ubiquitine est engagé en réponse à différents signaux métaboliques, nous avons réalisé une analyse protéomique globale dans le but d’identifier des protéines ubiquitylées dans le foie de souris soumises á un protocole de jeûne – re-nourrissage. Parmi les 117 protéines différemment ubiquitylé sur le jeûne ou le re-nourrissage, nous avons identifié complément 3 (C3) dans le foie de souris réalimentées. Nous avons observé qu'un produit d'activation de C3, C3a, est ubiquitylé dans les hépatocytes primaires traités avec les médias riches en nutriments. Ainsi, nous proposons que l'ubiquitination de C3 joue un rôle dans la régulation des fonctions inflammatoires ou métaboliques de C3 dans le foie. / In vertebrates, the liver has developed to be a major metabolic organ able to control glucose and lipid homeostasis. It activates or inhibits specific pathways in a regulated manner, depending on the metabolic state of our organism. Based on the emerging experimental evidence suggesting that the ubiquitin conjugation system is engaged in response to different metabolic cues, we conducted a global proteomic analysis to identify metabolic pathways modified by ubiquitylation. To this end, we used livers of mice subjected to a fasting – refeeding protocol. Amongst the 117 proteins differentially ubiquitylated upon fasting or refeeding conditions, we identified complement 3 (C3) to be ubiquitinated in livers of refed mice. We observed that an activation product of C3, C3a, is ubiquitylated in primary hepatocytes treated with nutrient-rich media. Thus, we suggest that the ubiquitylation of C3 plays a role in the regulation of inflammatory or metabolic functions of C3 in the liver.
|
16 |
Feminization of male mouse liver by continuous growth hormone infusion or loss of EZH1/2: activation of sex-biased transcriptional networks and dynamic changes in chromatin statesLau Corona, Dana 12 June 2018 (has links)
The sex-dependent pituitary growth hormone (GH) secretory profiles, pulsatile in males and persistent in females, regulate sex-biased expression of hundreds of genes in mammalian liver, contributing to sex differences in hepatic metabolism and disease. The sex-biased GH actions in the liver are mediated by STAT5b and enhanced by a network of transcription factors including the male-biased BCL6 and the female-specific CUX2, acting in the context of sex-biased chromatin states. First, the transcriptional and epigenomic changes induced by continuous-GH infusion (cGH) in male mice, which rapidly feminizes the temporal profile of liver STAT5 activity, were examined. RNA-seq analysis determined that cGH repressed the majority of male-biased genes and induced most female-biased genes within 4-days; however, several highly female-specific genes showed partial feminization. Female-biased genes already in an active chromatin state in male liver were induced early; genes in an inactive chromatin state often responded late. Early cGH-responsive genes included Cux2 and Bcl6 and their targets. DNase-seq and ChIP-seq were used to identify changes in sex-specific chromatin accessibility and histone modifications accompanying these cGH-induced gene expression changes. H3-K27me3 is a key sex-biased repressive mark found preferentially at highly female-biased genes in male mouse liver. Consistently, induction of female-biased genes by cGH was associated with loss of H3-K27me3 at their gene bodies. H3K27 methylation is catalyzed by Polycomb Repressive Complex-2 (PRC2) through its homologous catalytic subunits EZH1 and EZH2. An Ezh1-knockout mouse model with a hepatocyte-specific knockout of Ezh2 (DKO) was used to further investigate the role of H3-K27me3 in repressing sex-biased genes in mouse liver. Loss of Ezh1/Ezh2 led to a significant decrease in sex-specific gene expression, with many female-biased genes induced and male-biased genes repressed. These gene responses were more extensive in male than female liver, as was the loss of H3K27me3 sites and the reciprocal increases in active histone marks. There was substantial up-regulation of liver cancer and liver fibrosis-related genes in male and female DKO-mouse liver, with a subset of genes preferentially up-regulated in females. Thus, GH regulated sex-biased liver physiology is dictated by transcription factors arranged in a hierarchical network and by dynamic sex-biased epigenetic states. / 2020-06-12T00:00:00Z
|
17 |
Hepatic HAX-1 Deficiency Prevents Metabolic Diseases in MiceAlogaili, Fawzi 27 September 2020 (has links)
No description available.
|
18 |
Functional interaction between PROX1, ERR[alpha] and PGC-1[alpha] in the control of energy metabolismCharest-Marcotte, Alexis, 1984- January 2009 (has links)
No description available.
|
19 |
Characterizaton of human growth hormone receptor (hGHR) gene expression in human adipocytesWei, Yuhong, 1972- January 2007 (has links)
No description available.
|
20 |
Partial hepatectomy and liver regeneration in PCSK9 knockout miceRoubtsova, Anna. January 2008 (has links)
No description available.
|
Page generated in 0.0414 seconds