Spelling suggestions: "subject:"diagnosemethode"" "subject:"ljapunovova""
1 |
Stabilitätsuntersuchung von linearen stochastischen Differentialgleichungen nach der Methode von LjapunovWüsten, Ulrich, January 1982 (has links)
Thesis (Doctoral)--Ruhr-Universität Bochum, 1982.
|
2 |
Stability Analysis of a MEMS Acceleration SensorWolfram, Heiko, Dötzel, Wolfram 05 February 2007 (has links) (PDF)
The electrostatic actuation with its several advantages is the main principle for micro-electro-mechanical systems (MEMS). One major drawback is the nonlinear behavior, which results into instability, known as the electrostatic pull-in effect. This effect might also push a closed-loop configuration into instability and thus makes a linear time-invariant control inapplicable to the system. The paper investigates the stability of an acceleration sensor in closed-loop operation with this setting. A simplified controller adjustment gives a first insight into this topic. Practical implementations saturate on the quantizer's full-scale value, which is also considered in the stability analysis. Numerical phase-plane analysis verifies the stability and shows further surprising results.
|
3 |
Stability Analysis of a MEMS Acceleration SensorWolfram, Heiko, Dötzel, Wolfram 05 February 2007 (has links)
The electrostatic actuation with its several advantages is the main principle for micro-electro-mechanical systems (MEMS). One major drawback is the nonlinear behavior, which results into instability, known as the electrostatic pull-in effect. This effect might also push a closed-loop configuration into instability and thus makes a linear time-invariant control inapplicable to the system. The paper investigates the stability of an acceleration sensor in closed-loop operation with this setting. A simplified controller adjustment gives a first insight into this topic. Practical implementations saturate on the quantizer's full-scale value, which is also considered in the stability analysis. Numerical phase-plane analysis verifies the stability and shows further surprising results.
|
Page generated in 0.0409 seconds