• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicação do método de Monte Carlo para avaliação de incertezas em ensaios de perdas em transformadores de potência / Application of the Monte Carlo method for evaluating uncertainties in tests of losses in power transformers

Lourenço, Marcelo Luiz 01 September 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-30T13:22:27Z No. of bitstreams: 2 Dissertação - Marcelo Luiz Lourenço - 2014.pdf: 4735002 bytes, checksum: ca14f9b6bc39374e1b2f5e5d67f58695 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-30T14:30:51Z (GMT) No. of bitstreams: 2 Dissertação - Marcelo Luiz Lourenço - 2014.pdf: 4735002 bytes, checksum: ca14f9b6bc39374e1b2f5e5d67f58695 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-10-30T14:30:51Z (GMT). No. of bitstreams: 2 Dissertação - Marcelo Luiz Lourenço - 2014.pdf: 4735002 bytes, checksum: ca14f9b6bc39374e1b2f5e5d67f58695 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-09-01 / This work present a computer program for estimating measurement uncertainties of losses in power transformers, obtained through their tests of no load loss and of load loss, based on the models for these losses used in LabMETRO/EMC, which are non-linear, and on the Supplement 1 of the guide to the expression of uncertainty in measurement. This supplement was created in order to present a solution for situa-tions in which the evaluation of measurement uncertainty through this guide is not appropriate, being applicable to both linear and nonlinear models. The approaches to the evaluation of measurement uncertainties described in this supplement guide con-sist mainly in the numerical simulation of the Monte Carlo method. This technique allows to obtain, numerically, the probability density functions (PDF) of the output quantities through the propagation of the PDF of the inputs quantities using the measurement function. The developed program, named SIMETRANS-S1, should be integrated in the software used in test transformers of LabMETRO/EMC, called SIMETRANS. The results obtained through the SIMETRANS-S1 indicate that those results given by SIMETRANS, which are based on the guide to the expression of un-certainty in measurement, cannot be validated for the test of losses in transformers in LabMETRO / EMC, and must be use those results based on the Supplement 1 of this guide. This improvement of SIMETRANS program ensures credibility and quality to the measurement results from the metrological point of view. This work is an im-portant step to the process of accreditation of LabMETRO/EMC by the National Insti-tute of Metrology, Quality and Technology (INMETRO). / Este trabalho apresenta um programa computacional para estimar as incertezas de medição das perdas em transformadores de potência, obtidas através de seus en-saios em vazio e em carga, com base nos modelos destas perdas utilizados no La-bMETRO/EMC, os quais são não lineares, e no Suplemento 1 do guia para a ex-pressão da incerteza de medição. Este suplemento foi criado com a finalidade de apresentar uma solução para as situações em que a avaliação da incerteza de me-dição através deste guia não seja adequada, sendo aplicável a modelos lineares ou não lineares. A abordagem para a avaliação das incertezas de medição descritas neste suplemento consiste essencialmente na simulação numérica do método de Monte Carlo. Esta técnica permite obter numericamente função densidade de proba-bilidade (FDP) das grandezas de saída através da propagação das FDP das gran-dezas de entrada usando a função de medição. O programa desenvolvido, SIMETRANS-S1, deve ser integrado ao programa para ensaio de transformadores utilizado no LabMETRO/EMC, denominado SIMETRANS. Os resultados obtidos através do SIMETRANS-S1 indicam que aqueles resultados obtidos através do SIMETRANS, os quais são baseados no Guia para a Expressão da Incerteza de Medição, não podem ser validados para o ensaio de perdas em transformadores no LabMETRO/EMC, devendo-se optar pelos resultados baseado no Suplemento 1 deste guia. Este aperfeiçoamento do programa SIMETRANS garante maior credibili-dade e qualidade aos resultados de medição do ponto de vista metrológico. Este trabalho constitui um passo fundamental para o processo de acreditação do LabME-TRO/EMC pelo Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO).
2

Modeling the Power Distribution Network of a Virtual City and Studying the Impact of Fire on the Electrical Infrastructure

Bagchi, Arijit 12 March 2013 (has links)
The smooth and reliable operation of key infrastructure components like water distribution systems, electric power systems, and telecommunications is essential for a nation?s economic growth and overall security. Tragic events such as the Northridge earthquake and Hurricane Katrina have shown us how the occurrence of a disaster can cripple one or more such critical infrastructure components and cause widespread damage and destruction. Technological advancements made over the last few decades have resulted in these infrastructure components becoming highly complicated and inter-dependent on each other. The development of tools which can aid in understanding this complex interaction amongst the infrastructure components is thus of paramount importance for being able to manage critical resources and carry out post-emergency recovery missions. The research work conducted as a part of this thesis aims at studying the effects of fire (a calamitous event) on the electrical distribution network of a city. The study has been carried out on a test bed comprising of a virtual city named Micropolis which was modeled using a Geographic Information System (GIS) based software package. This report describes the designing of a separate electrical test bed using Simulink, based on the GIS layout of the power distribution network of Micropolis. It also proposes a method of quantifying the damage caused by fire to the electrical network by means of a parameter called the Load Loss Damage Index (LLDI). Finally, it presents an innovative graph theoretic approach for determining how to route power across faulted sections of the electrical network using a given set of Normally Open switches. The power is routed along a path of minimum impedance. The proposed methodologies are then tested by running numerous simulations on the Micropolis test bed, corresponding to different fire spread scenarios. The LLDI values generated from these simulation runs are then analyzed in order to determine the most damaging scenarios and to identify infrastructure components of the city which are most crucial in containing the damage caused by fire to the electrical network. The conclusions thereby drawn can give useful insights to emergency response personnel when they deal with real-life disasters.
3

Análise de formulações explícitas do coeficiente de perda de carga em condutos pressurizados / Analysis of explicit formulations of the pressure loss coefficient in pressurized conduits

Pimenta, Bruna Dalcin 07 July 2017 (has links)
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / One of the parameters involved in the design of pressurized hydraulic systems is the pressure drop of the pipes. This verification can be performed through the Darcy-Weisbach formulation, which considers a coefficient of loss of charge (f) that can be measured by the implicit Colebrook-White equation. However, for this determination it is necessary to use numerical methods. Numerous explicit approaches have been proposed to estimate the "f", with different precisions and complexity. Considering the above, the objective of this work is to analyze the explicit approximations of the pressure loss coefficient for pressurized conduits in relation to the Colebrook-White formulation, through the relative performance and error index, determining the most accurate ones so that they can replace the standard Implied for the turbulent flow regime. It was analyzed 29 explicit equations in the literature, determining the coefficient of loss of charge through Reynolds number values in the range of 4x10³ ≤ Re ≤ 108 and relative roughness of 10-6 ≤ Ɛ / D ≤ 5x10-2, obtaining 160 points for each equation, totaling 4800 points. Statistical analysis was performed by the performance index (Id) and the relative error (ER) of the explicit equations in relation to Colebrook-White. The equations of Chen (1979), Shacham (1980), Sonnad Goudar (2006), Buzzelli (2008), Vantankhah and Kouchakzadeh (2008), Fang et al. (2011) and Offor and Alabi (2016a) apply for the entire range of 4x10³ ≤ Re ≤ 108 and 10-6 ≤ Ɛ / D ≤ 5x10-2, and presented high “Id” and high precision, the latter being highlighted by extreme precision, which is indicated to replace the use of the Colebrook-White standard approximation. / Um dos parâmetros envolvido no dimensionamento de sistemas hidráulicos pressurizados é a perda de carga das tubulações. Essa verificação pode ser realizada através da formulação de Darcy-Weisbach, que considera um coeficiente de perda de carga (f) que pode ser mensurado pela equação implícita de Colebrook-White. Porém, para essa determinação é necessário utilizar métodos numéricos. Numerosas aproximações explícitas têm sido propostas para estimar o “f”, com diferentes precisões e complexidade. Diante do exposto, o objetivo desse trabalho é analisar as aproximações explícitas do coeficiente de perda de carga para condutos pressurizados em relação a formulação de Colebrook-White, através do índice de desempenho e erro relativo, determinando as mais precisas para que possam substituir a padrão implícita, para o regime de fluxo turbulento. Foi analisado 29 equações explícitas presentes na literatura, determinando o coeficiente de perda de carga através de valores do número de Reynolds na faixa de 4x10³ ≤ Re ≤ 108 e rugosidade relativa de 10-6 ≤ Ɛ/D ≤ 5x10-2, obtendo 160 pontos para cada equação, totalizando 4800 pontos. A análise estatística foi realizada pelo índide de desempenho (Id) e pelo erro relativo (ER) das equações explícitas em relação à Colebrook-White. As equações de Chen (1979), Shacham (1980), Sonnad Goudar (2006), Buzzelli (2008), Vantankhah e Kouchakzadeh (2008), Fang et al. (2011) e Offor e Alabi (2016a) se aplicam para todo intervalo de 4x10³ ≤ Re ≤ 108 e 10-6 ≤ Ɛ/D ≤ 5x10-2, e apresentaram elevado Id e elevada precisão, destacando-se a última por extrema precisão, sendo esta a indicada para substituir o uso da aproximação padrão de Colebrook-White.
4

COVER CROPPING FOR SUSTAINABLE CO-PRODUCTION OF BIOENERGY, FOOD, FEED (BFF) AND ENHANCEMENT OF ECOSYSTEM SERVICES (ES)

Brodrick L Deno (9867779) 18 December 2020 (has links)
Increasing food, feed, fiber, biofuel production on decreasing amounts of arable land while simultaneously enhancing ecosystem services is challenging. Strategic inclusion of winter rye (<i>Secale cereale</i>) for biomass, silage, grain and Kura clover (<i>Trifolium ambiguum</i>) living mulch into existing Midwestern cropping systems may offer alternative economic income for farmers without displacing or reducing yields of primary crops. Research was conducted at the Purdue Water Quality Field Station (WQFS) where net balances of water, carbon, nitrogen, and radiation can be measured, and greenhouse gas (GHG) emissions are monitored. The agronomic performance of a corn-soybean rotation and continuous corn (controls) were compared to novel systems that included the use of rye cover cropping and Kura clover co-cropping. Rye was harvested for biomass/silage at heading immediately followed by corn or soybean planting. Continuous corn receiving 69 kg N ha<sup>-1 </sup>was planted into an establishment of Kura clover sod. Controls included these same systems without the rye or clover. GHG samples were taken via the static chamber method and tile-drained water sub-samples were collected, analyzed for nitrate, and load losses calculated. Biomass composition was determined and used to calculate herbage theoretical ethanol (EtOH) yields. Cereal rye did not significantly decrease corn or soybean grain yield. Averaged across years, Kura clover significantly depressed corn grain yields by nearly 70%. Kura clover significantly reduced flow-weighted tile drainage nitrate (NO<sub>3</sub><sup>-</sup>) concentrations, however cereal rye did not. Reductions in flow-weighted tile drainage nitrate (NO<sub>3</sub><sup>-</sup>) concentrations were found to largely occur during Quarter two (April, May, June). Cover crops did not significantly reduce annual tile drained NO<sub>3</sub><sup>-</sup> load losses in most cases, however, they did significantly reduce annual N<sub>2</sub>O emissions. Cumulative annual CH<sub>4</sub> emissions were not significantly altered. Annual CO<sub>2</sub>emissions were higher after the introduction of Kura clover and not significantly altered following the introduction of cereal rye. Averaged across years, theoretical ethanol yields in the Kura clover system produced 2,752 L EtOH ha<sup>-1</sup>, whereas EtOH production in cereal rye systems ranged from 3,245 to 4,210 L EtOH ha<sup>-1</sup>. Theoretical ethanol yields of continuous corn and rotational controls ranged from 2,982 to 3505 L EtOH ha<sup>-1</sup> for these same systems without the cereal rye of Kura clover. These data suggest that a multipurpose approach to cover crop inclusion can provide both environmental and economic advantages worthy of consideration.
5

Spannglasträger – Glasträger mit vorgespannter Bewehrung

Engelmann, Michael 24 August 2017 (has links)
Glas und Beton sind sich in wesentlichen Materialeigenschaften ähnlich: Beide zeigen gegenüber einer hohen Druckfestigkeit eine vergleichsweise geringe Zugfestigkeit und versagen spröde. Diese Analogie führte zur Entwicklung bewehrter Glasträger, die sich durch eine aufgeklebte Stahllasche an ihrer Biegezugkante auszeichnen. Dadurch wurden die Übertragung von Zugkräften auch im Rissfall möglich, sodass ein duktiles Bauteilverhalten erreicht und der im Konstruktiven Glasbau notwendige Nachweis der Resttragfähigkeit erfüllt wird. Glasträger mit verbundlos vorgespannter Bewehrung – Spannglasträger – stellen die Fortführung dieses Analogiegedankens dar. Neben einer gezielten Steigerung der Erstrisslast, können die Träger planmäßig überhöht werden. Damit wird einer bisher üblichen Überdimensionierung mit der Anordnung nicht ausgenutzter „Opferscheiben“ entgegen gewirkt und sichere sowie materialeffiziente Konstruktionen mit maximaler Transparenz ermöglicht. Diese Konstruktionsweise wurde bislang ausschließlich für einzelne Sondierungsuntersuchungen in breiter Variantenvielfalt genutzt. Eine Systematik und einheitliche Bezeichnungsweise ist nicht vorhanden. Darüber hinaus beschränken sich verfügbare Ergebnisse auf die Beschreibung der Tragfähigkeit, ohne die Resttragfähigkeit explizit zu belegen oder die Dauerhaftigkeit nachzuweisen. Mit dieser Arbeit wurde anhand einer Analogiebetrachtung zum Eurocode 2 eine Bezeichnungsweise für bewehrte und vorgespannte Glasträger entwickelt und für vorhandene Konstruktionen erfolgreich angewendet. Darin zeigt sich, dass der Stand der Technik auf diese Weise charakterisierbar ist. Zusätzlich wird die These aufgestellt, dass sich das Tragverhalten von Spannglasträgern wie im Stahlbeton- und Spannbetonbau beschreiben und die auftretenden Spannkraftverluste analog berechnen lassen. Diese These wird mithilfe experimenteller Studien als Kern dieser Arbeit untersucht und durch eine ergänzende numerische Modellierung bestätigt. Zunächst wird das Tragverhalten im Kurzzeit-Biegeversuch an 15 Prüfkörpern unter variierten Bewehrungsgraden und Vorspannkräften untersucht. Dabei zeigen sich gesteigerte Erstrisslasten sowie ein sicheres Verhalten im Anschluss an die Belastung. Durch die Vorspannung wird das Tragverhalten gezielt beeinflusst. Zusätzlich erbringt eine zerstörungsfreie Untersuchungsreihe an 28 Prüfkörpern unter konstanter Gebrauchslast über 1000 Stunden erstmals eine Beschreibung der auftretenden Spannkraftverluste. Diese sind maßgeblich von der horizontalen Durchbiegung sowie der daraus resultierenden Belastung der Zwischenschicht im Verbund-Sicherheitsglas abhängig. Aus der Größenordnung der Verluste lässt sich schlussfolgern, dass eine Begrenzung dieses Verformungsanteils sowie eine konstruktive Entlastung der Zwischenschicht notwendig sind. Zudem wird die Änderung der Vorspannkraft unter einer Temperaturlast beschrieben. Im Ergebnis zeigt sich, dass dieser Lastfall mittels der linearen Balkentheorie beschreibbar und der damit assoziierte Spannkraftverlust berechenbar ist. Die Resttragfähigkeit von 24 Spannglasträgern wird mithilfe eines eigens entwickelten Prüfverfahrens bestätigt. Während die Bewehrung einerseits eine Überbrückung von Rissflanken ermöglicht, verursacht die Vorspannkraft andererseits im teilzerstörten Tragsystem bisweilen ein frühzeitiges Versagen. Daher wird empfohlen, die baukonstruktive Detailentwicklung zu intensivieren, um einen größeren Sicherheitsvorteil aus der Konstruktionsweise zu generieren. Die Arbeit beinhaltet erstmals eine systematische Datensammlung zum Tragverhalten von Spannglasträgern. Es zeigt sich, dass auf eine Anordnung von „Opferscheiben“ zugunsten einer steigenden Materialeffizienz nicht nur verzichtet werden kann, sondern im Sinne eines effektiven Tragverhaltens verzichtet werden muss. Mit der vorgeschlagenen Bezeichnungsweise, den abgeleiteten konstruktiven Maßnahmen sowie den gezeigten Untersuchungsmethoden besteht nunmehr die Möglichkeit, sichere und dauerhafte Spannglasträger zu entwerfen und deren Trageffizienz zu belegen.:1 Einleitung 1.1 Problemstellung und Motivation 1.2 Zielsetzung 1.3 Vorgehensweise 1.4 Abgrenzung 2 Analogiebetrachtung 2.1 Zielsetzung 2.2 Anwendungsbereich 2.3 Begriffe 2.3.1 Bewehrte und hybride Glastragwerke 2.3.2 Thermische und mechanische Vorspannung 2.3.3 Spanngliedkonstruktion und Spannverfahren 2.3.4 Lage und Verlauf des Spanngliedes 2.3.5 Weitere Begriffe 2.4 Grundlagen der Tragwerksplanung 2.5 Baustoffe 2.5.1 Festigkeit 2.5.2 Elastische Formänderungseigenschaften 2.5.3 Kriechen und Schwinden 2.5.4 Bewehrungsmaterial 2.5.5 Komponenten von Spannsystemen 2.5.6 Querschnittsgestaltung 2.6 Dauerhaftigkeit 2.7 Schnittgrößenermittlung 2.7.1 Allgemeines 2.7.2 Imperfektionen 2.7.3 Idealisierung 2.7.4 Lineare Berechnung 2.7.5 Nichtlineare Berechnung 2.7.6 Zeitabhängigkeit der Vorspannkraft 2.7.7 Vorspannung während der Berechnung 2.8 Grenzzustände und Nachweise 2.8.1 Grenzzustand der Tragfähigkeit 2.8.2 Grenzzustand der Gebrauchstauglichkeit 2.8.3 Nachweis der Resttragfähigkeit 2.9 Bewehrungs- und Konstruktionsregeln 2.10 Zusammenfassung 3 Experimentelle Untersuchungen 3.1 Zielsetzung 3.2 Prüfkörper – Konstruktion und Materialien 3.3 Tragverhalten unter kurzzeitiger Beanspruchung 3.3.1 Prüfkörper 3.3.2 Versuchseinrichtung 3.3.3 Untersuchungsverfahren und -bedingungen 3.3.4 Analyse- und Auswertungsverfahren 3.3.5 Ergebnisse und Ergebnisdiskussion 3.3.6 Folgerungen und Zusammenfassung 3.4 Tragverhalten unter Dauerlast 3.4.1 Prüfkörper 3.4.2 Versuchseinrichtung 3.4.3 Untersuchungsverfahren und -bedingungen 3.4.4 Analyse- und Auswertungsverfahren 3.4.5 Ergebnisse und Ergebnisdiskussion 3.4.6 Folgerungen und Zusammenfassung 3.5 Resttragfähigkeit 3.5.1 Prüfkörper 3.5.2 Versuchseinrichtung 3.5.3 Untersuchungsverfahren und -bedingungen 3.5.4 Analyse- und Auswertungsverfahren 3.5.5 Ergebnisse und Ergebnisdiskussion 3.5.6 Folgerungen und Zusammenfassung 3.6 Tragverhalten unter Temperaturbelastung 3.6.1 Prüfkörper 3.6.2 Versuchseinrichtung 3.6.3 Untersuchungsverfahren und -bedingungen 3.6.4 Analyse- und Auswertungsverfahren 3.6.5 Ergebnisse und Ergebnisdiskussion 3.6.6 Folgerungen und Zusammenfassung 3.7 Zusammenfassung 4 Numerische Untersuchungen 4.1 Zielsetzung 4.2 Modellbeschreibung 4.2.1 Systembeschreibung 4.2.2 Einwirkungen 4.2.3 Berechnung 4.3 Ergebnisse und Ergebnisdiskussion 4.3.1 Vergleich mit dem analytischen Modell 4.3.2 Modellierung der Umlenkung 4.3.3 Einfluss der Zwischenschicht 4.3.4 Auswahl eines Imperfektionswertes 4.3.5 Seilkraftverlust im Dauerversuch 4.4 Zusammenfassung 5 Diskussion 5.1 Zielsetzung 5.2 Tragverhalten unter kurzzeitiger Beanspruchung 5.2.1 Tragverhalten unter Vorspannbelastung 5.2.2 Trag- und Bruchverhalten unter Biegebelastung 5.2.3 Rissverhalten unter Biegebelastung 5.2.4 Spannungszuwachs in der Bewehrung 5.3 Tragverhalten unter Dauerbelastung 5.4 Resttragfähigkeit 5.5 Zusammenfassung 6 Konstruktive Empfehlungen 6.1 Zielsetzung 6.2 Teilprojekte 6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“ 6.2.2 Spannglasbrücke – glasstec 2014 6.2.3 Fußgängerbrücke in Nara (Japan) 2015 6.3 Verankerungen 6.3.1 Tragfähigkeit der Verankerung 6.3.2 Seilkrafteinleitung 6.3.3 Toleranzausgleich 6.3.4 Neigungsausgleich 6.4 Vorspannverfahren 6.5 Umlenkpunkte 6.5.1 Geklotzte Umlenkpunkte 6.5.2 Geklebte Umlenkpunkte 6.6 Montage 6.7 Weiterführende Konstruktionen 6.7.1 Spannglasträger mit nachträglichem Verbund 6.7.2 Segmentbauweise 6.8 Zusammenfassung 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick 8 Literatur 8.1 Fachbücher und Fachaufsätze 8.2 Normen und Richtlinien Bezeichnungen Abbildungsverzeichnis und -nachweis Tabellenverzeichnis A Analytische Schnittgrößenberechnung B Kurzzeit-Biegeversuche C Dauerversuche 1000 h D Versuche zur Resttragfähigkeit E Biegeversuche unter Temperaturlast F SOFiSTiK Quelltext / Glass and concrete share essential material characteristics: Their compressive strength exceeds their tensile strength considerably and both of them fail in a brittle manner. This analogy led to the development of reinforced glass beams, which are improved by means of adhesively bonded steel sections in the tensile zone. This improvement allowed for a direct transfer of tensile loads in a post-breakage state and resulted in a ductile structural element, which met the special demand of structural glass for a sufficient residual loadbearing capacity. Glass beams with unbonded, post-tensioned reinforcement – Spannglass Beams – carry this analogy concept on. The members will comprise an increased initial fracture strength and may be uplifted intentionally. This development has rendered the need for over-dimensioning by removing unnecessary sacrificial layers, which will result in a material efficient structure and will maximise transparency. Solely single exploratory investigations have used this idea in a wide variety of options so far. There is neither a uniform classification nor a consistent nomenclature. Furthermore, available results are limited to the concise description of the short-term load-bearing properties without proving the residual load-bearing capacity explicitly and confirming longterm durability. This thesis describes the development and the application of a nomenclature for reinforced and pre-compressed glass beams in an analogy study according to Eurocode 2. The state of technology can be characterised in this manner. Additionally, the research describes the load-bearing behaviour as well as the calculation of the loss of pre-stress of Spannglass Beams by analogy with concrete structures. As the key section of this thesis, this statement is examined by means of comprehensive experimental studies and completed by a numerical calculation. Primarily, the load-bearing behaviour of 15 specimens in short-term bending tests and a variety of reinforcement ratios and pre-stress levels were determined. The results show an increase of initial fracture strength as well as safe behaviour after failure. The pre-stress changes the load-bearing performance significantly. Furthermore, a non-destructive study including a constant loading for 1000 h describes the loss of pre-stress in 28 specimens for the first time. The horizontal deflection and the thus resulting shear stresses of the interlayer material of a laminated glass section are the critical parameters. From the magnitude of losses it may be concluded that the deflections need to be limited and the interlayer foils need to be relieved from stress. Moreover, the structural response during a change in temperature is in good agreement with the results obtained from linear beam theory. This allows for an estimation of the associated losses. Finally, a specifically developed test approach confirms the residual load-bearing capacity of 24 specimens. The reinforcement shows the ability to bridge cracks in the glass. However, it should be noted that pre-stress occasionally causes an early failure of the partially broken Spannglass cross-section. Therefore, intensifying the development of structural details in order to generate an increased advantage concerning safety is recommended. This contribution contains a systematic acquisition of analytical, experimental and numerical data regarding the loadbearing characteristics of Spannglass Beams for the first time. The use of a sacrificial layers is not necessary. Even more, to reach the most effective load-bearing behaviour, it is necessary to abandon them completely. Implementing the developed nomenclature, realising the recommended structural provisions and using the proposed methods, it is now possible to compose safe and durable Spannglass Beams as well as prove their structural efficiency.:1 Einleitung 1.1 Problemstellung und Motivation 1.2 Zielsetzung 1.3 Vorgehensweise 1.4 Abgrenzung 2 Analogiebetrachtung 2.1 Zielsetzung 2.2 Anwendungsbereich 2.3 Begriffe 2.3.1 Bewehrte und hybride Glastragwerke 2.3.2 Thermische und mechanische Vorspannung 2.3.3 Spanngliedkonstruktion und Spannverfahren 2.3.4 Lage und Verlauf des Spanngliedes 2.3.5 Weitere Begriffe 2.4 Grundlagen der Tragwerksplanung 2.5 Baustoffe 2.5.1 Festigkeit 2.5.2 Elastische Formänderungseigenschaften 2.5.3 Kriechen und Schwinden 2.5.4 Bewehrungsmaterial 2.5.5 Komponenten von Spannsystemen 2.5.6 Querschnittsgestaltung 2.6 Dauerhaftigkeit 2.7 Schnittgrößenermittlung 2.7.1 Allgemeines 2.7.2 Imperfektionen 2.7.3 Idealisierung 2.7.4 Lineare Berechnung 2.7.5 Nichtlineare Berechnung 2.7.6 Zeitabhängigkeit der Vorspannkraft 2.7.7 Vorspannung während der Berechnung 2.8 Grenzzustände und Nachweise 2.8.1 Grenzzustand der Tragfähigkeit 2.8.2 Grenzzustand der Gebrauchstauglichkeit 2.8.3 Nachweis der Resttragfähigkeit 2.9 Bewehrungs- und Konstruktionsregeln 2.10 Zusammenfassung 3 Experimentelle Untersuchungen 3.1 Zielsetzung 3.2 Prüfkörper – Konstruktion und Materialien 3.3 Tragverhalten unter kurzzeitiger Beanspruchung 3.3.1 Prüfkörper 3.3.2 Versuchseinrichtung 3.3.3 Untersuchungsverfahren und -bedingungen 3.3.4 Analyse- und Auswertungsverfahren 3.3.5 Ergebnisse und Ergebnisdiskussion 3.3.6 Folgerungen und Zusammenfassung 3.4 Tragverhalten unter Dauerlast 3.4.1 Prüfkörper 3.4.2 Versuchseinrichtung 3.4.3 Untersuchungsverfahren und -bedingungen 3.4.4 Analyse- und Auswertungsverfahren 3.4.5 Ergebnisse und Ergebnisdiskussion 3.4.6 Folgerungen und Zusammenfassung 3.5 Resttragfähigkeit 3.5.1 Prüfkörper 3.5.2 Versuchseinrichtung 3.5.3 Untersuchungsverfahren und -bedingungen 3.5.4 Analyse- und Auswertungsverfahren 3.5.5 Ergebnisse und Ergebnisdiskussion 3.5.6 Folgerungen und Zusammenfassung 3.6 Tragverhalten unter Temperaturbelastung 3.6.1 Prüfkörper 3.6.2 Versuchseinrichtung 3.6.3 Untersuchungsverfahren und -bedingungen 3.6.4 Analyse- und Auswertungsverfahren 3.6.5 Ergebnisse und Ergebnisdiskussion 3.6.6 Folgerungen und Zusammenfassung 3.7 Zusammenfassung 4 Numerische Untersuchungen 4.1 Zielsetzung 4.2 Modellbeschreibung 4.2.1 Systembeschreibung 4.2.2 Einwirkungen 4.2.3 Berechnung 4.3 Ergebnisse und Ergebnisdiskussion 4.3.1 Vergleich mit dem analytischen Modell 4.3.2 Modellierung der Umlenkung 4.3.3 Einfluss der Zwischenschicht 4.3.4 Auswahl eines Imperfektionswertes 4.3.5 Seilkraftverlust im Dauerversuch 4.4 Zusammenfassung 5 Diskussion 5.1 Zielsetzung 5.2 Tragverhalten unter kurzzeitiger Beanspruchung 5.2.1 Tragverhalten unter Vorspannbelastung 5.2.2 Trag- und Bruchverhalten unter Biegebelastung 5.2.3 Rissverhalten unter Biegebelastung 5.2.4 Spannungszuwachs in der Bewehrung 5.3 Tragverhalten unter Dauerbelastung 5.4 Resttragfähigkeit 5.5 Zusammenfassung 6 Konstruktive Empfehlungen 6.1 Zielsetzung 6.2 Teilprojekte 6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“ 6.2.2 Spannglasbrücke – glasstec 2014 6.2.3 Fußgängerbrücke in Nara (Japan) 2015 6.3 Verankerungen 6.3.1 Tragfähigkeit der Verankerung 6.3.2 Seilkrafteinleitung 6.3.3 Toleranzausgleich 6.3.4 Neigungsausgleich 6.4 Vorspannverfahren 6.5 Umlenkpunkte 6.5.1 Geklotzte Umlenkpunkte 6.5.2 Geklebte Umlenkpunkte 6.6 Montage 6.7 Weiterführende Konstruktionen 6.7.1 Spannglasträger mit nachträglichem Verbund 6.7.2 Segmentbauweise 6.8 Zusammenfassung 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick 8 Literatur 8.1 Fachbücher und Fachaufsätze 8.2 Normen und Richtlinien Bezeichnungen Abbildungsverzeichnis und -nachweis Tabellenverzeichnis A Analytische Schnittgrößenberechnung B Kurzzeit-Biegeversuche C Dauerversuche 1000 h D Versuche zur Resttragfähigkeit E Biegeversuche unter Temperaturlast F SOFiSTiK Quelltext

Page generated in 0.0708 seconds