• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Adaptively refined Cartesian grid method for moving boundary problems applied to biomedical systems

Krishnan, Sreedevi 01 January 2006 (has links)
A major drawback in the operation of mechanical heart valve prostheses is thrombus formation in the near valve region potentially due to the high shear stresses present in the leakage jet flows through small gaps between leaflets and the valve housing. Detailed flow analysis in this region during the valve closure phase is of interest in understanding the relationship between shear stress and platelet activation. An efficient Cartesian grid method is developed for the simulation of incompressible flows around stationary and moving three-dimensional immersed solid bodies as well as fluid-fluid interfaces. The embedded boundaries are represented using Levelsets and treated in a sharp manner without the use of source terms to represent boundary effects. The resulting algorithm is implemented in a straightforward manner in three dimensions and retains global second-order accuracy. When dealing with problems of disparate length scales encountered in many applications, it is necessary to resolve the physically important length scales adequately to ensure accuracy of the solution. Fixed grid methods often have the disadvantage of heavy mesh requirement for well resolved calculations. A quadtree based adaptive local mesh refinement scheme is developed to complement the sharp interface Cartesian grid method scheme for efficient and optimized calculations. Detailed timing and accuracy data is presented for a variety of benchmark problems involving moving boundaries. The above method is then applied to modeling heart valve closure and predicting thrombus formation. Leaflet motion is calculated dynamically based on the fluid forces acting on it employing a fluid-structure interaction algorithm. Platelets are modeled and tracked as point particles by a Lagrangian particle tracking method which incorporates the hemodynamic forces on the particles. Leaflet closure dynamics including rebound is analyzed and validated against previous studies. Vortex shedding and formation of recirculation regions are observed downstream of the valve, particularly in the gap between the valve and the housing. Particle exposure to high shear and entrapment in recirculation regions with high residence time in the vicinity of the valve are observed corresponding to regions prone to thrombus formation.
2

Méthodes de discrétisation hybrides pour les problèmes de contact de Signorini et les écoulements de Bingham / Hybrid discretization methods for Signorini contact and Bingham flow problems

Cascavita Mellado, Karol 18 December 2018 (has links)
Cette thèse s'intéresse à la conception et à l'analyse de méthodes de discrétisation hybrides pour les inégalités variationnelles non linéaires apparaissant en mécanique des fluides et des solides. Les principaux avantages de ces méthodes sont la conservation locale au niveau des mailles, la robustesse par rapport à différents régimes de paramètres et la possibilité d’utiliser des maillages polygonaux / polyédriques avec des nœuds non coïncidants, ce qui est très intéressant dans le contexte de l’adaptation de maillage. Les méthodes de discrétisation hybrides sont basées sur des inconnues discrètes attachées aux faces du maillage. Des inconnues discrètes attachées aux mailles sont également utilisées, mais elles peuvent être éliminées localement par condensation statique. Deux applications principales des discrétisations hybrides sont abordées dans cette thèse. La première est le traitement par la méthode de Nitsche du problème de contact de Signorini (dans le cas scalaire) avec une non-linéarité dans les conditions aux limites. Nous prouvons des estimations d'erreur optimales conduisant à des taux de convergence d'erreur d'énergie d'ordre (k + 1), si des polynômes de face de degré k >= 0 sont utilisés. La deuxième application principale concerne les fluides à seuil viscoplastiques. Nous concevons une méthode de Lagrangien augmenté discrète appliquée à la discrétisation hybride. Nous exploitons la capacité des méthodes hybrides d’utiliser des maillages polygonaux avec des nœuds non coïncidants afin d'effectuer l’adaptation de maillage local et mieux capturer la surface limite. La précision et la performance des schémas sont évaluées sur des cas tests bidimensionnels, y compris par des comparaisons avec la littérature / This thesis is concerned with the devising and the analysis of hybrid discretization methods for nonlinear variational inequalities arising in computational mechanics. Salient advantages of such methods are local conservation at the cell level, robustness in different regimes and the possibility to use polygonal/polyhedral meshes with hanging nodes, which is very attractive in the context of mesh adaptation. Hybrid discretizations methods are based on discrete unknowns attached to the mesh faces. Discrete unknowns attached to the mesh cells are also used, but they can be eliminated locally by static condensation. Two main applications of hybrid discretizations methods are addressed in this thesis. The first one is the treatment using Nitsche's method of Signorini's contact problem (in the scalar-valued case) with a nonlinearity in the boundary conditions. We prove optimal error estimates leading to energy-error convergence rates of order (k+1) if face polynomials of degree k >= 0 are used. The second main application is on viscoplastic yield flows. We devise a discrete augmented Lagrangian method applied to the present hybrid discretization. We exploit the capability of hybrid methods to use polygonal meshes with hanging nodes to perform local mesh adaptation and better capture the yield surface. The accuracy and performance of the present schemes is assessed on bi-dimensional test cases including comparisons with the literature
3

Finite element modeling of electromagnetic radiation and induced heat transfer in the human body

Kim, Kyungjoo 24 September 2013 (has links)
This dissertation develops adaptive hp-Finite Element (FE) technology and a parallel sparse direct solver enabling the accurate modeling of the absorption of Electro-Magnetic (EM) energy in the human head. With a large and growing number of cell phone users, the adverse health effects of EM fields have raised public concerns. Most research that attempts to explain the relationship between exposure to EM fields and its harmful effects on the human body identifies temperature changes due to the EM energy as the dominant source of possible harm. The research presented here focuses on determining the temperature distribution within the human body exposed to EM fields with an emphasis on the human head. Major challenges in accurately determining the temperature changes lie in the dependence of EM material properties on the temperature. This leads to a formulation that couples the BioHeat Transfer (BHT) and Maxwell equations. The mathematical model is formed by the time-harmonic Maxwell equations weakly coupled with the transient BHT equation. This choice of equations reflects the relevant time scales. With a mobile device operating at a single frequency, EM fields arrive at a steady-state in the micro-second range. The heat sources induced by EM fields produce a transient temperature field converging to a steady-state distribution on a time scale ranging from seconds to minutes; this necessitates the transient formulation. Since the EM material properties depend upon the temperature, the equations are fully coupled; however, the coupling is realized weakly due to the different time scales for Maxwell and BHT equations. The BHT equation is discretized in time with a time step reflecting the thermal scales. After multiple time steps, the temperature field is used to determine the EM material properties and the time-harmonic Maxwell equations are solved. The resulting heat sources are recalculated and the process continued. Due to the weak coupling of the problems, the corresponding numerical models are established separately. The BHT equation is discretized with H¹ conforming elements, and Maxwell equations are discretized with H(curl) conforming elements. The complexity of the human head geometry naturally leads to the use of tetrahedral elements, which are commonly employed by unstructured mesh generators. The EM domain, including the head and a radiating source, is terminated by a Perfectly Matched Layer (PML), which is discretized with prismatic elements. The use of high order elements of different shapes and discretization types has motivated the development of a general 3D hp-FE code. In this work, we present new generic data structures and algorithms to perform adaptive local refinements on a hybrid mesh composed of different shaped elements. A variety of isotropic and anisotropic refinements that preserve conformity of discretization are designed. The refinement algorithms support one- irregular meshes with the constrained approximation technique. The algorithms are experimentally proven to be deadlock free. A second contribution of this dissertation lies with a new parallel sparse direct solver that targets linear systems arising from hp-FE methods. The new solver interfaces to the hierarchy of a locally refined mesh to build an elimination ordering for the factorization that reflects the h-refinements. By following mesh refinements, not only the computation of element matrices but also their factorization is restricted to new elements and their ancestors. The solver is parallelized by exploiting two-level task parallelism: tasks are first generated from a parallel post-order tree traversal on the assembly tree; next, those tasks are further refined by using algorithms-by-blocks to gain fine-grained parallelism. The resulting fine-grained tasks are asynchronously executed after their dependencies are analyzed. This approach effectively reduces scheduling overhead and increases flexibility to handle irregular tasks. The solver outperforms the conventional general sparse direct solver for a class of problems formulated by high order FEs. Finally, numerical results for a 3D coupled BHT with Maxwell equations are presented. The solutions of this Maxwell code have been verified using the analytic Mie series solutions. Starting with simple spherical geometry, parametric studies are conducted on realistic head models for a typical frequency band (900 MHz) of mobile phones. / text

Page generated in 0.111 seconds