Spelling suggestions: "subject:"longterm aprediction"" "subject:"longterm iprediction""
1 |
An online-integrated condition monitoring and prognostics framework for rotating equipmentAlrabady, Linda Antoun Yousef January 2014 (has links)
Detecting abnormal operating conditions, which will lead to faults developing later, has important economic implications for industries trying to meet their performance and production goals. It is unacceptable to wait for failures that have potential safety, environmental and financial consequences. Moving from a “reactive” strategy to a “proactive” strategy can improve critical equipment reliability and availability while constraining maintenance costs, reducing production deferrals, decreasing the need for spare parts. Once the fault initiates, predicting its progression and deterioration can enable timely interventions without risk to personnel safety or to equipment integrity. This work presents an online-integrated condition monitoring and prognostics framework that addresses the above issues holistically. The proposed framework aligns fully with ISO 17359:2011 and derives from the I-P and P-F curve. Depending upon the running state of machine with respect to its I-P and P-F curve an algorithm will do one of the following: (1) Predict the ideal behaviour and any departure from the normal operating envelope using a combination of Evolving Clustering Method (ECM), a normalised fuzzy weighted distance and tracking signal method. (2) Identify the cause of the departure through an automated diagnostics system using a modified version of ECM for classification. (3) Predict the short-term progression of fault using a modified version of the Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS), called here MDENFIS and a tracking signal method. (4) Predict the long term progression of fault (Prognostics) using a combination of Autoregressive Integrated Moving Average (ARIMA)- Empirical Mode Decomposition (EMD) for predicting the future input values and MDENFIS for predicting the long term progression of fault (output). The proposed model was tested and compared against other models in the literature using benchmarks and field data. This work demonstrates four noticeable improvements over previous methods: (1) Enhanced testing prediction accuracy, (2) comparable processing time if not better, (3) the ability to detect sudden changes in the process and finally (4) the ability to identify and isolate the problem source with high accuracy.
|
2 |
An online-integrated condition monitoring and prognostics framework for rotating equipmentAlrabady, Linda Antoun Yousef 10 1900 (has links)
Detecting abnormal operating conditions, which will lead to faults developing
later, has important economic implications for industries trying to meet their
performance and production goals. It is unacceptable to wait for failures that
have potential safety, environmental and financial consequences. Moving from
a “reactive” strategy to a “proactive” strategy can improve critical equipment
reliability and availability while constraining maintenance costs, reducing
production deferrals, decreasing the need for spare parts. Once the fault
initiates, predicting its progression and deterioration can enable timely
interventions without risk to personnel safety or to equipment integrity.
This work presents an online-integrated condition monitoring and prognostics
framework that addresses the above issues holistically. The proposed
framework aligns fully with ISO 17359:2011 and derives from the I-P and P-F
curve. Depending upon the running state of machine with respect to its I-P and
P-F curve an algorithm will do one of the following:
(1) Predict the ideal behaviour and any departure from the normal operating
envelope using a combination of Evolving Clustering Method (ECM), a
normalised fuzzy weighted distance and tracking signal method.
(2) Identify the cause of the departure through an automated diagnostics
system using a modified version of ECM for classification.
(3) Predict the short-term progression of fault using a modified version of the
Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS), called here
MDENFIS and a tracking signal method.
(4) Predict the long term progression of fault (Prognostics) using a combination
of Autoregressive Integrated Moving Average (ARIMA)- Empirical Mode
Decomposition (EMD) for predicting the future input values and MDENFIS for
predicting the long term progression of fault (output).
The proposed model was tested and compared against other models in the
literature using benchmarks and field data. This work demonstrates four
noticeable improvements over previous methods:
(1) Enhanced testing prediction accuracy, (2) comparable processing time if not
better, (3) the ability to detect sudden changes in the process and finally (4) the
ability to identify and isolate the problem source with high accuracy.
|
3 |
Prognose des Langzeitverhaltens von Textilbeton-Tragwerken mit rekurrenten neuronalen NetzenFreitag, Steffen, Graf, Wolfgang, Kaliske, Michael 03 June 2009 (has links) (PDF)
Zur Prognose des Langzeitverhaltens textilbetonverstärkter Tragwerke wird ein modellfreies Vorgehen auf Basis rekurrenter neuronaler Netze vorgestellt. Das Vorgehen ermöglicht die Prognose zeitveränderlicher Strukturantworten unter Berücksichtigung der gesamten Belastungsgeschichte. Mit unscharfen Größen aus Messungen an Versuchstragwerken werden rekurrente neuronale Netze trainiert. Anschließend ist die unscharfe Prognose des Tragverhaltens möglich.
|
4 |
Prognose des Langzeitverhaltens von Textilbeton-Tragwerken mit rekurrenten neuronalen NetzenFreitag, Steffen, Graf, Wolfgang, Kaliske, Michael 03 June 2009 (has links)
Zur Prognose des Langzeitverhaltens textilbetonverstärkter Tragwerke wird ein modellfreies Vorgehen auf Basis rekurrenter neuronaler Netze vorgestellt. Das Vorgehen ermöglicht die Prognose zeitveränderlicher Strukturantworten unter Berücksichtigung der gesamten Belastungsgeschichte. Mit unscharfen Größen aus Messungen an Versuchstragwerken werden rekurrente neuronale Netze trainiert. Anschließend ist die unscharfe Prognose des Tragverhaltens möglich.
|
5 |
Enhancing Long-Term Human Motion Forecasting using Quantization-based Modelling. : Integrating Attention and Correlation for 3D Motion Prediction / Förbättring av långsiktig prognostisering av mänsklig rörelse genom kvantisering-baserad modellering. : Integrering av uppmärksamhet och korrelation för 3D-rörelseförutsägelse.González Gudiño, Luis January 2023 (has links)
This thesis focuses on addressing the limitations of existing human motion prediction models by extending the prediction horizon to very long-term forecasts. The objective is to develop a model that achieves one of the best stable prediction horizons in the field, providing accurate predictions without significant error increase over time. Through the utilization of quantization based models our research successfully achieves the desired objective with the proposed aligned version of Mean Per Joint Position Error. The first of the two proposed models, an attention-based Vector Quantized Variational AutoEncoder, demonstrates good performance in predicting beyond conventional time boundaries, maintaining low error rates as the prediction horizon extends. While slight discrepancies in joint positions are observed, the model effectively captures the underlying patterns and dynamics of human motion, which remains highly applicable in real-world scenarios. Furthermore, our investigation into a correlation-based Vector Quantized Variational AutoEncoder, as an alternative to attention-based one, highlights the challenges in capturing complex relationships and meaningful patterns within the data. The correlation-based VQ-VAE’s tendency to predict flat outputs emphasizes the need for further exploration and innovative approaches to improve its performance. Overall, this thesis contributes to the field of human motion prediction by extending the prediction horizon and providing insights into model performance and limitations. The developed model introduces a novel option to consider when contemplating long-term prediction applications across various domains and sets the foundation for future research to enhance performance in long-term scenarios. / Denna avhandling fokuserar på att hantera begränsningarna i befintliga modeller för förutsägelse av mänskliga rörelser genom att utöka förutsägelsehorisonten till mycket långsiktiga prognoser. Målet är att utveckla en modell som uppnår en av de bästa stabila prognoshorisonterna inom området, vilket ger korrekta prognoser utan betydande felökning över tiden. Genom att använda kvantiseringsbaserade modeller uppnår vår forskning framgångsrikt det önskade målet med den föreslagna anpassade versionen av Mean Per Joint Position Error. Den första av de två föreslagna modellerna, en uppmärksamhetsbaserad Vector Quantized Variational AutoEncoder, visar goda resultat när det gäller att förutsäga bortom konventionella tidsgränser och bibehåller låga felfrekvenser när förutsägelsehorisonten förlängs. Även om små avvikelser i ledpositioner observeras, fångar modellen effektivt de underliggande mönstren och dynamiken i mänsklig rörelse, vilket förblir mycket tillämpligt i verkliga scenarier. Vår undersökning av en korrelationsbaserad Vector Quantized Variational AutoEncoder, som ett alternativ till en uppmärksamhetsbaserad sådan, belyser dessutom utmaningarna med att fånga komplexa relationer och meningsfulla mönster i data. Den korrelationsbaserade VQ-VAE:s tendens att förutsäga platta utdata understryker behovet av ytterligare utforskning och innovativa metoder för att förbättra dess prestanda. Sammantaget bidrar denna avhandling till området för förutsägelse av mänskliga rörelser genom att utöka förutsägelsehorisonten och ge insikter om modellens prestanda och begränsningar. Den utvecklade modellen introducerar ett nytt alternativ att ta hänsyn till när man överväger långsiktiga prediktionstillämpningar inom olika områden och lägger grunden för framtida forskning för att förbättra prestanda i långsiktiga scenarier.
|
Page generated in 0.0768 seconds