Spelling suggestions: "subject:"longest path"" "subject:"congest path""
1 |
Intersections of Longest Paths and CyclesHippchen, Thomas 23 April 2008 (has links)
It is a well known fact in graph theory that in a connected graph any two longest paths must have a vertex in common. In this paper we will explore what happens when we look at k - connected graphs, leading us to make a conjecture about the intersection of any two longest paths. We then look at cycles and look at what would be needed to improve on a result by Chen, Faudree and Gould about the intersection of two longest cycles.
|
2 |
Efficient Algorithm to Find Performance Measures in Systems under Structural PerturbationsMadraki, Golshan 19 September 2017 (has links)
No description available.
|
3 |
La conjecture de partitionnement des cheminsChampagne-Paradis, Audrey 05 1900 (has links)
Soit G = (V, E) un graphe simple fini. Soit (a, b) un couple d’entiers positifs. On note par τ(G) le nombre de sommets d’un chemin d’ordre maximum dans G. Une partition (A,B) de V(G) est une (a,b)−partition si τ(⟨A⟩) ≤ a et τ(⟨B⟩) ≤ b. Si G possède une (a, b)−partition pour tout couple d’entiers positifs satisfaisant τ(G) = a+b, on dit que G est τ−partitionnable. La conjecture de partitionnement des chemins, connue sous le nom anglais de Path Partition Conjecture, cherche à établir que tout graphe est τ−partitionnable. Elle a été énoncée par Lovász et Mihók en 1981 et depuis, de nombreux chercheurs ont tenté de démontrer cette conjecture et plusieurs y sont parvenus pour certaines classes de graphes. Le présent mémoire rend compte du statut de la conjecture, en ce qui concerne les graphes non-orientés et ceux orientés. / Let G = (V,E) be a finite simple graph. We denote the number of vertices in a longest path in G by τ(G). A partition (A,B) of V is called an (a,b)−partition if τ(⟨A⟩) ≤ a and τ(⟨B⟩) ≤ b. If G can be (a,b)−partitioned for every pair of positive integers (a, b) satisfying a + b = τ (G), we say that G is τ −partitionable. The following conjecture, called The Path Partition Conjecture, has been stated by Lovász and Mihók in 1981 : every graph is τ−partitionable. Since that, many researchers prove that this conjecture is true for several classes of graphs and digraphs. This study summarizes the different results about the Path Partition conjecture.
|
4 |
La conjecture de partitionnement des cheminsChampagne-Paradis, Audrey 05 1900 (has links)
Soit G = (V, E) un graphe simple fini. Soit (a, b) un couple d’entiers positifs. On note par τ(G) le nombre de sommets d’un chemin d’ordre maximum dans G. Une partition (A,B) de V(G) est une (a,b)−partition si τ(⟨A⟩) ≤ a et τ(⟨B⟩) ≤ b. Si G possède une (a, b)−partition pour tout couple d’entiers positifs satisfaisant τ(G) = a+b, on dit que G est τ−partitionnable. La conjecture de partitionnement des chemins, connue sous le nom anglais de Path Partition Conjecture, cherche à établir que tout graphe est τ−partitionnable. Elle a été énoncée par Lovász et Mihók en 1981 et depuis, de nombreux chercheurs ont tenté de démontrer cette conjecture et plusieurs y sont parvenus pour certaines classes de graphes. Le présent mémoire rend compte du statut de la conjecture, en ce qui concerne les graphes non-orientés et ceux orientés. / Let G = (V,E) be a finite simple graph. We denote the number of vertices in a longest path in G by τ(G). A partition (A,B) of V is called an (a,b)−partition if τ(⟨A⟩) ≤ a and τ(⟨B⟩) ≤ b. If G can be (a,b)−partitioned for every pair of positive integers (a, b) satisfying a + b = τ (G), we say that G is τ −partitionable. The following conjecture, called The Path Partition Conjecture, has been stated by Lovász and Mihók in 1981 : every graph is τ−partitionable. Since that, many researchers prove that this conjecture is true for several classes of graphs and digraphs. This study summarizes the different results about the Path Partition conjecture.
|
5 |
Constructing and representing a knowledge graph(KG) for Positive Energy Districts (PEDs)Davari, Mahtab January 2023 (has links)
In recent years, knowledge graphs(KGs) have become essential tools for visualizing concepts and retrieving contextual information. However, constructing KGs for new and specialized domains like Positive Energy Districts (PEDs) presents unique challenges, particularly when dealing with unstructured texts and ambiguous concepts from academic articles. This study focuses on various strategies for constructing and inferring KGs, specifically incorporating entities related to PEDs, such as projects, technologies, organizations, and locations. We utilize visualization techniques and node embedding methods to explore the graph's structure and content and apply filtering techniques and t-SNE plots to extract subgraphs based on specific categories or keywords. One of the key contributions is using the longest path method, which allows us to uncover intricate relationships, interconnectedness between entities, critical paths, and hidden patterns within the graph, providing valuable insights into the most significant connections. Additionally, community detection techniques were employed to identify distinct communities within the graph, providing further understanding of the structural organization and clusters of interconnected nodes with shared themes. The paper also presents a detailed evaluation of a question-answering system based on the KG, where the Universal Sentence Encoder was used to convert text into dense vector representations and calculate cosine similarity to find similar sentences. We assess the system's performance through precision and recall analysis and conduct statistical comparisons of graph embeddings, with Node2Vec outperforming DeepWalk in capturing similarities and connections. For edge prediction, logistic regression, focusing on pairs of neighbours that lack a direct connection, was employed to effectively identify potential connections among nodes within the graph. Additionally, probabilistic edge predictions, threshold analysis, and the significance of individual nodes were discussed. Lastly, the advantages and limitations of using existing KGs(Wikidata and DBpedia) versus constructing new ones specifically for PEDs were investigated. It is evident that further research and data enrichment is necessary to address the scarcity of domain-specific information from existing sources.
|
Page generated in 0.0652 seconds