• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La conjecture de partitionnement des chemins

Champagne-Paradis, Audrey 05 1900 (has links)
Soit G = (V, E) un graphe simple fini. Soit (a, b) un couple d’entiers positifs. On note par τ(G) le nombre de sommets d’un chemin d’ordre maximum dans G. Une partition (A,B) de V(G) est une (a,b)−partition si τ(⟨A⟩) ≤ a et τ(⟨B⟩) ≤ b. Si G possède une (a, b)−partition pour tout couple d’entiers positifs satisfaisant τ(G) = a+b, on dit que G est τ−partitionnable. La conjecture de partitionnement des chemins, connue sous le nom anglais de Path Partition Conjecture, cherche à établir que tout graphe est τ−partitionnable. Elle a été énoncée par Lovász et Mihók en 1981 et depuis, de nombreux chercheurs ont tenté de démontrer cette conjecture et plusieurs y sont parvenus pour certaines classes de graphes. Le présent mémoire rend compte du statut de la conjecture, en ce qui concerne les graphes non-orientés et ceux orientés. / Let G = (V,E) be a finite simple graph. We denote the number of vertices in a longest path in G by τ(G). A partition (A,B) of V is called an (a,b)−partition if τ(⟨A⟩) ≤ a and τ(⟨B⟩) ≤ b. If G can be (a,b)−partitioned for every pair of positive integers (a, b) satisfying a + b = τ (G), we say that G is τ −partitionable. The following conjecture, called The Path Partition Conjecture, has been stated by Lovász and Mihók in 1981 : every graph is τ−partitionable. Since that, many researchers prove that this conjecture is true for several classes of graphs and digraphs. This study summarizes the different results about the Path Partition conjecture.
2

La conjecture de partitionnement des chemins

Champagne-Paradis, Audrey 05 1900 (has links)
Soit G = (V, E) un graphe simple fini. Soit (a, b) un couple d’entiers positifs. On note par τ(G) le nombre de sommets d’un chemin d’ordre maximum dans G. Une partition (A,B) de V(G) est une (a,b)−partition si τ(⟨A⟩) ≤ a et τ(⟨B⟩) ≤ b. Si G possède une (a, b)−partition pour tout couple d’entiers positifs satisfaisant τ(G) = a+b, on dit que G est τ−partitionnable. La conjecture de partitionnement des chemins, connue sous le nom anglais de Path Partition Conjecture, cherche à établir que tout graphe est τ−partitionnable. Elle a été énoncée par Lovász et Mihók en 1981 et depuis, de nombreux chercheurs ont tenté de démontrer cette conjecture et plusieurs y sont parvenus pour certaines classes de graphes. Le présent mémoire rend compte du statut de la conjecture, en ce qui concerne les graphes non-orientés et ceux orientés. / Let G = (V,E) be a finite simple graph. We denote the number of vertices in a longest path in G by τ(G). A partition (A,B) of V is called an (a,b)−partition if τ(⟨A⟩) ≤ a and τ(⟨B⟩) ≤ b. If G can be (a,b)−partitioned for every pair of positive integers (a, b) satisfying a + b = τ (G), we say that G is τ −partitionable. The following conjecture, called The Path Partition Conjecture, has been stated by Lovász and Mihók in 1981 : every graph is τ−partitionable. Since that, many researchers prove that this conjecture is true for several classes of graphs and digraphs. This study summarizes the different results about the Path Partition conjecture.

Page generated in 0.0947 seconds