• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design of a Wireless Power Transfer System using Electrically Coupled Loop Antennas

Chandrasekhar Nambiar, Shyam 01 July 2015 (has links)
Wireless Power Transfer (WPT) has become quite popular over the recent years. This thesis presents some design challenges while developing a WPT system and describes a system-level methodology for designing an end-to-end system. A critical analysis of contemporary research is performed in the form of a literature survey of both academic and commercial research to understand their benefits and demerits. Some theoretical notes are presented on coupled-mode theory and coupled filter theory and the problems concerning WPT analyzed using these models. The need for higher power transfer efficiency (PTE) and power delivered to load (PDL) is studied using these models. The case for using magnetic antennas over electric antennas when surrounded by lossy media (specifically for the case of human body tissues at various frequencies) is made using some theoretical models and simulation results. An Electrically Coupled Loop Antenna (ECLA) is introduced, studied and designed for two main WPT applications, viz. free space transmission and that of powering implanted devices. An equivalent circuit is proposed to better understand the coupling effects of the antennas on a circuit level and to study the effect of various environmental and structural factors on the coupling coefficient. Some prototypes were created and measured for the two use cases of free space and implanted applications. In order to complete the system design, a negative resistance-based oscillator is designed and fabricated, that incorporates the antennas as a load and oscillates at the required frequency. Some changes in load conditions and power handling are studied by the use of two circuits for free-space (high-power) and implanted (low-power) applications. Finally, the salient points of the thesis are re-iterated and some future work outlined in the concluding chapter. / Master of Science
12

Log-Periodic Loop Antennas

Kim, Jeong I. 13 August 1999 (has links)
The Log-Periodic Loop Antenna with Ground Reflector (LPLA-GR) is investigated as a new type of antenna, which provides wide bandwidth, broad beamwidth, and high gain. This antenna has smaller transverse dimensions (by a factor of 2/pi) than a log-periodic dipole antenna with comparable radiation characteristics. Several geometries with different parameters are analyzed numerically using ESP code, which is based on the method of moments. A LPLA-GR with 6 turns and a cone angle of 30* offers the most promising radiation characteristics. This antenna yields 47.6 % gain bandwidth and 12 dB gain according to the numerical analysis. The LPLA-GR also provides linear polarization and unidirectional patterns. Three prototype antennas were constructed and measured in the Virginia Tech Antenna Laboratory. Far-field patterns and input impedance were measured over a wide range of frequencies. The measured results agree well with the calculated results. Because of its wide bandwidth, high gain, and small size, the LPLA is expected to find applications as feeds for reflector antennas, as detectors in EMC scattering range, and as mobile communication antennas. / Master of Science
13

Body SAR Study of the WLAN Antennas for Tablet PC Application

Ma, Pei-ji 17 June 2011 (has links)
In this thesis, a comparison of the body SAR value of five planar WLAN antennas including two coupled-fed shorted monopole antennas, a coupled-fed loop antenna, a monopole antenna, and a monopole slot antenna for tablet PC applications are presented. A required minimum distance between the antenna and the testing flat phantom to meet the 1-g body SAR requirement of 1.6 W/kg has been determined. Results show that the body SAR results of the coupled-fed loop antenna are lowest among the five tested antennas. Detailed results and discussion are presented in this thesis. Also, a comparison of the body SAR value of a planar antenna and an antenna with 3-D bent structure are presented.
14

Conception d'antennes de communication à travers le corps humain pour le suivi thérapeutique / Design of communication antennas throught the human body for the therapeutic monitoring

El Hatmi, Fatiha 21 March 2013 (has links)
Avec le développement rapide des technologies sans fil modernes et la miniaturisation des antennes et des systèmes électriques, l'emploi des antennes à l'intérieur du corps humain pour le suivi thérapeutique est devenu possible. Des batteries permettent d'alimenter ces antennes ; la réduction de la consommation de puissance implique l'augmentation de la durée de vie de circuits ingérables. Le corps humain, qui a une conductivité non nulle, n'est pas un milieu idéal pour la transmission des ondes RF à cause de l'atténuation liée aux propriétés diélectriques des tissus biologiques. Cependant, les tissus humains ne perturbent pas le champ magnétique car celui-ci dépend de la perméabilité du milieu qui est égale à un dans le corps humain. Bien que la puissance du champ magnétique décroisse avec l'exposant six de la distance, la technique utilisant les communications par induction magnétique en champ proche a été adoptée dans cette étude pour concevoir une liaison sans fil à faible portée à travers le corps humain. Durant ces travaux de thèse, après une caractérisation détaillée de la bobine d'émission située à l'intérieur du corps humain et de la bobine de réception localisée à sa surface, nous avons mis en place un bilan de liaison pour contribuer à l'amélioration du transfert de puissance dans ce milieu dissipatif. Un modèle analytique, déterminant les facteurs qui peuvent affecter le bilan de liaison par induction magnétique, a été vérifié à travers les simulations et les mesures. La variation de la position et de l'orientation de l'antenne ingérable ont été prises en compte pour évaluer la réponse de couplage entre la bobine émettrice et la bobine réceptrice. Les résultats obtenus constituent un pas en avant vers de futures recherches sur la conception de antennes dans les milieux dissipatifs et en particulier le corps humain / With the rapid growth of wireless technology and the miniaturization of modern antennas and electrical systems, the use of antennas inside the human body for therapeutic monitoring became possible. Batteries are used to supply these antennas; reducing the power consumption allows to increase the lifetime of ingestible systems. The human body, which has non-zero conductivity, is not an ideal environment for the transmission of RF waves because of the attenuation due to the dielectric properties of biological tissues. However, the human tissues do not disrupt the magnetic field as it depends on the permeability of the medium which is equal to one in the human body. Although the magnetic field power decreases with the distance exponent six, the technique using near-field magnetic induction communications was adopted in this study to design a short range wireless link through the human body. In this thesis, after a detailed characterization of the transmitting coil antenna located inside the human body and the receiving coil placed on its surface, we have implemented a link budget to contribute to the improvement of power transfer in the dissipative medium. An analytical model, identifying factors that can affect the link budget by magnetic induction, has been verified through simulations and measurements. The variation of the position and the orientation of the ingestible antenna were taken into account to evaluate the coupling response between the transmitting coil and the receiving coil. The results are a step toward future research on the design of antennas in dissipative media, in particular the human body
15

Magnetic Antennas for Ground Penetrating Radar

Bellett, Patrick Thomas Unknown Date (has links)
The concept for a novel new antenna design is presented and investigated for application to ground penetrating radar (GPR). The proposed new antenna design is called the shielded magnetic bowtie antenna (MBA). As the name suggests, it is predominately constructed from a bowtie-shaped volume of magnetic material that is fed from the centre of the structure by a small magnetic loop antenna. This thesis develops the magnetic antenna concept and investigates its potential for GPR predominately through numerical modelling. However, a significant part of the investigation concentrates on validating the numerical modelling technique developed to study the shielded MBA by comparing the results with measurements obtained from a scale model constructed to operate in the watertank antenna test facility, a controlled environment for GPR antenna research. The broadband properties required for GPR antennas are achieved uniquely with the shielded MBA design by a combination of the antenna shape being defined in terms of angles and an inherent magnetic loss mechanism within the antenna material structure. The design also affords an intrinsically placed antenna shield that has the potential for mitigating problems typically experienced with shielding electric dipole antennas. Antenna shielding is an important consideration for GPR antenna designers, especially given the recent US government (FCC) changes that restrict radiated energy emissions within the regulated spectrum used by GPR systems. In addition to providing the intended directional radiation properties, the magnetic antenna shield also provides an elegant solution for a low-loss wideband balun, allowing the antenna to be effectively fed from an unbalanced coaxial transmission line. Other important aspects of the proposed design are discussed in relation to the requirements for GPR antennas. Numerical models of the magnetic antenna concept show encouraging bandwidth results. For example, from a simple comparison with an equivalent sized electric bowtie antenna model, the effective gain bandwidth of the magnetic antenna is found to be at least 3-octaves compared to approximately 2-octaves for the electric bowtie. The shielded magnetic antenna achieves a gain of approximately 2 dB, compared to 5 dB for the unshielded electric bowtie antenna. However, it is noted that the magnetic antenna models contain significantly more loss compared to the electric bowtie model. The shielded MBA design emerged from a theoretical investigation of electrically small GPR antennas, given that the initial thesis objective was to investigate ways of improving low frequency GPR antennas. In general, GPR systems are operated with electric dipole antennas, such as the electric bowtie. Interestingly, the electrically small antenna investigation revealed that only the small magnetic loop (i.e., magnetic dipole) antenna can be constructed to approach, arbitrarily closely, the fundamental bandwidth limit for small antennas. This surprising and counter intuitive result is shown to be theoretically achievable with the use of magnetic materials. For the small loop antenna, energy stored within the antenna structure can be avoided by filling the antenna sphere with a perfect magnetic material. This theoretical argument is discussed and supported by numerically modelled results. The electrically small antenna investigation presented in this thesis extends to include the influence that proximity to a lossy dielectric half-space has, on improving the antenna impedance bandwidth. This investigation is of general interest for GPR; it is performed numerically and supported by measurements conducted on an experimental loop antenna situated at various heights above the ground. These results provide support for the hypothesis that a magnetic antenna may experience less influence from near-field changes in the dielectric properties of the ground compared to the equivalent sized electric field antenna.
16

Design Methodology for Wideband Electrically Small Antennas (ESA) Based on the Theory of Characteristic Modes (CM)

Obeidat, Khaled Ahmad 26 August 2010 (has links)
No description available.

Page generated in 0.0502 seconds